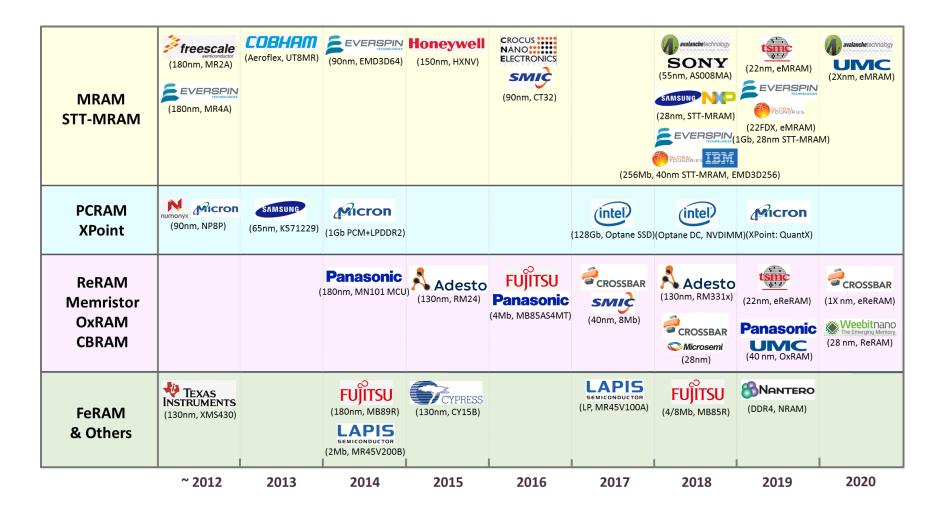


ChipSelect Memory On-Site Seminar

Memory Technology Update

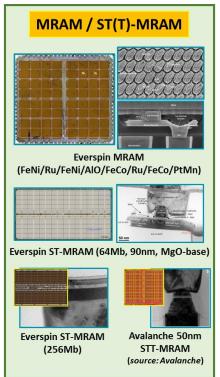
- XPoint & Emerging Memory

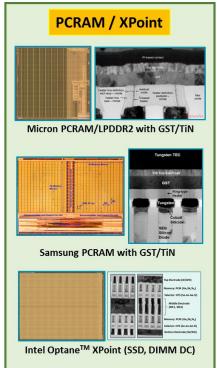
Ver. Mar.-2019

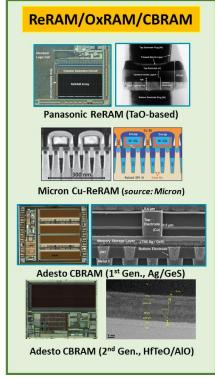

By Dr. Jeongdong Choe Senior Technical Fellow

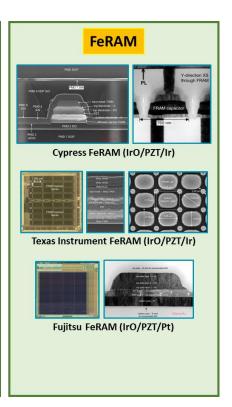
Contents

- Emerging Memory Product Roadmap Update
- Adesto CBRAM Technology
 - Comparison 1st Gen. vs. 2nd Gen.
- Everspin 3rd Gen. MRAM: 256 Mb pMTJ STT-MRAM
 - Comparison 1st Gen. vs. 2nd Gen vs. 3rd Gen.
- Intel XPoint Memory Technology
 - Cell Design & Process Integration


Emerging Memory Mass-Products & Major Players






Emerging Memory Technology: Current

✓ Everspin STT-MRAM 2nd Gen. (256 Mb) Die/TEM images added

Emerging Memory Technology Report Roadmap

CBRAM 130nm RM24EP128A-BSNC (ACE-1508-805)

Complete

In Progress

Expected

Micron QuantX **XPoint Memory** (Monitoring)

Intel Optane NVDIMM XPoint Memory 2nd G.

FRAM 180nm, 16Mb MB85RS2MT (ACE-1508-804)

Intel Optane SSD XPoint Memory ACE#2 (ACE-1704-806)

STT-MRAM pMTJ 256Mb ACE on AUP-AXL-M128 (MFR-1810-803) (AME-1810-802)

ReRAM MN101LR05D (CAR-1504-902) (ACE-1508-802)

ST-MRAM 90nm, 64Mb EMD3D064M (ACE-1510-801)

40nm/28nm RRAM ACE

ACE

STT-MRAM, 55nm **ACE**

FRAM TI046B1 Circuit (CAR-1504-802)

FRAM CY15B104Q (ACE-1512-801)

Intel Optane SSD XPoint Memory ACE#1 (ACE-1704-805)

CBRAM 2nd Gen. RM33 series (EXR-1805-801)

STT-MRAM, 28nm ACE

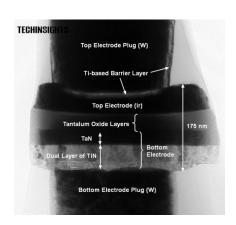
2015

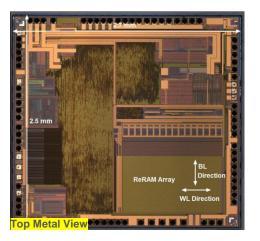
2016

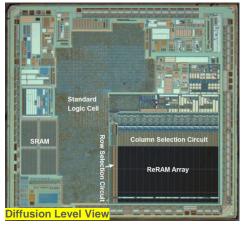
2017

2018 ~ 2019

Adesto Technologies

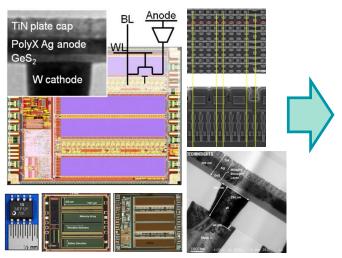

ReRAM (CBRAM) Products/Technology


Ref. ReRAM from Panasonic

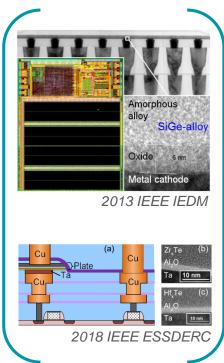

- ✓ MN101LR05D Die Markings
- √ 180 nm CMOS Process, 4 Metals
- ✓ Die Size: 6.75 mm² (2.7 mm x 2.5 mm)
- ✓ ReRAM Cell Size: 1.2 μm² (1.1 μm x 1.1 μm)
- ✓ ReRAM Cell between M3 and M4
- ✓ TaO-based ReRAM (W/Ir/TaO/TaN/TiN/W)

Top Electrode Plug (W) Top Electrode (In) Tantalum Oxide

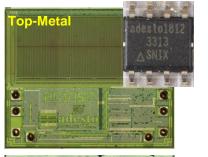
Panasonic



Adesto Technology ReRAM (CBRAM)

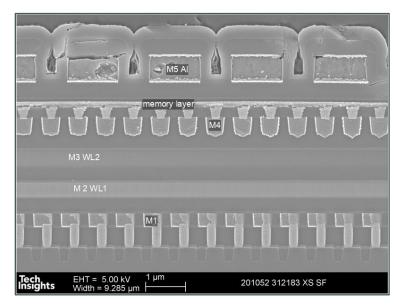


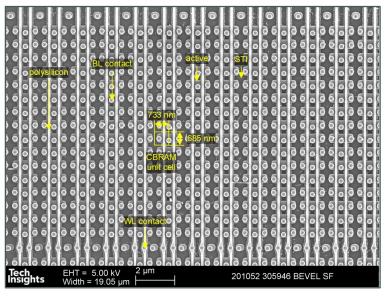
2014 ~ 2016


1st Generation (MP)

Report ID: 0115-37569-O-5DM-100

2017 ~ **2**nd **Generation (MP)**

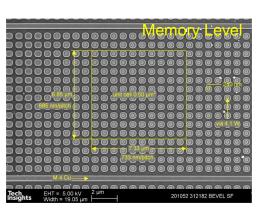

Report ID: EXR-1805-801

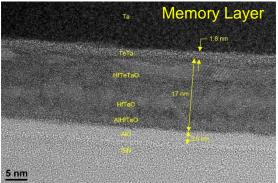

Adesto Technology ReRAM (CBRAM)

2nd Generation (RM3313-XSNI-B)

SEM X-section

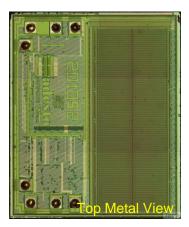
SEM Gate Level (top-viewed)

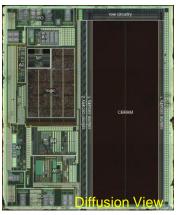

^{*} Report ID: EXR-1805-801, MFR-1808-804


Adesto Technology ReRAM (CBRAM)

2nd Generation (RM3313-XSNI-B)

- √ Adesto 2nd Generation CBRAM MP
- ✓ CBRAM Memory Layer thickness: ~ 78 nm (in total)
- √ Ta Layer (top): 58 nm thick
- ✓ A thin layer of tellurium tantalum (TeTa) under Ta layer
- Conductive Bridge Layers: HfTeTaO/HfTeO/HfTeAlO/AlO
- ✓ CBRAM Array Area Efficiency: 36.47% (excluding row & column circuitry)
- √ X-FAB Silicon Foundries fabbed. (Old: Altis Semiconductor)





^{*} Report ID: EXR-1805-801, MFR-1808-804

Adesto ReRAM (CBRAM): 2nd Gen.

□ Die Floorplan

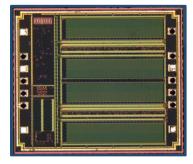
Functional Block Summary

Block	Functional Description	Length (mm)	Width (mm)	Area (mm²)	Percentage of Die
A1	Likely regulator	0.11	0.20	0.02	1.76
A2	Likely charge pump	0.22	0.05	0.01	0.86
A3	Likely clock generator	Irreg	Irregular		2.16
A4	Likely regulator circuitry	0.17	0.28	0.05	3.90
A5	Likely reference circuitry	0.19	0.27	0.05	4.01
CBRAM	Memory array	1.13	0.41	0.46	36.47
Column circuitry 1 (x2)	Column circuitry	1.13	0.04	0.08	6.46
Column circuitry 2	Column circuitry	1.13	0.04	0.04	3.45
I/O (x2)	Input / output circuitry	Irregular		0.11	9.06
Logic	Digital logic	Irregular		0.11	8.38
M1	Memory	0.12	0.14	0.02	1.32
row circuitry	Row decode and control circuitry	0.07	0.54	0.04	3.13
Total die utilization				1.02	80.95
Total die utilization: logic and memory				0.63	49.62
Total die utilization: analog			0.28	22.28	
Total die utilization: I/O			0.11	9.06	
Other				0.24	19.05
Total die 1.24 1.02			1.26	100.00	

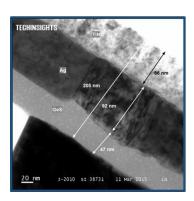
Report ID: MFR-1808-804

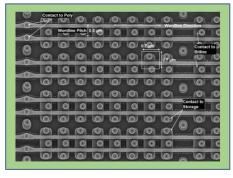
Adesto Technologies CBRAM Updates

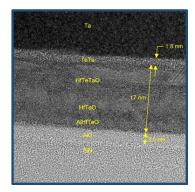
ITEMS	RM24 Series	RM33 Series		
Products	RM24EP128KS CBRAM	RM3313-XSNI-B CBRAM		
# Dies in PKG	1	1		
Die Size	1.80 mm x 1.50 mm (2.70 mm ²)	1.02 mm x 1.24 mm (1.27 mm ²)		
CBRAM Memory Capacity	128 Kb	32 Kb		
Bit Density (/die, /Memory Block)	47.4 Kb/mm², 150.6 Kb/mm²	25.2 Kb/mm², 67.7 Kb/mm²		
Portion of Memory Area on Die	0.85 mm ² , 31.5 %	0.47 mm ² , 37.0 %		
Technology Node	130 nm	130 nm		
# Metals	4 (3 Cu + 1 Al)	5 (4 Cu + 1 Al)		
Contacted Gate Pitch/Length	488 nm / 107 nm	510 nm / 108 nm		
Smallest WL / BL pitch	0.5 μm / 0.7 μm	0.5 μm / 0.7 μm		
Cell Size	700 nm x 700 nm (0.49 μm²)	685 nm x 733 nm (0.50 μm²)		
Top Electrode	M4 / Cu	M5/W/Ta		
CBRAM Storage Medium	TiN (66 nm) / Ag (92 nm) / GeS ₂ (47 nm)	TaTe (2 nm) / HfTeTaO (8 nm) / HfTeO (9 nm) / AIO (3 nm)		
Bottom Electrode	W / M3	Ta/W/M4		
Gox Thickness	2.6 nm	2.4 nm		
Foundry	Altis Semiconductor	Altis Semiconductor		


Adesto Technologies CBRAM Updates

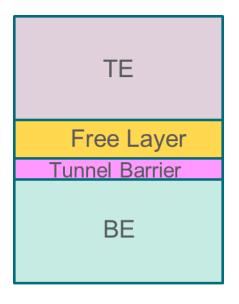
CBRAM 1st Gen.



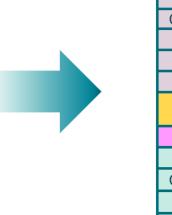

CBRAM 2nd Gen.



- ✓ The tellurium-based filament achieved better stability as compared to silver.
- ✓ CBRAM 3rd Gen. might be 45 nm with ZrTe CB-layer from TowerJazz Panasonic Semiconductor



Everspin Technologies


(STT-) MRAM Products/Technology

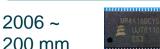
MRAM Structure: General

Conductor
Metal Hard Mask
Metal Diffusion Barrier
Top Pinning Layer
Top Pinned Layer
Coupling/Spacer (1 or multi)
Top Fixed Layer
Tunnel Barrier
Fe-Rich Layer
Free Layer
Tunnel Barrier
Fixed Layer
Coupling/Spacer (1 or multi)
Pinned Layer
Pinning Layer
Seed/Buffer Layer
Conductor

Current Structure (SAF, SyF, DSF, DTB, etc.)

• SAF: Synthetic antiferromagnetic structure

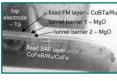
SyF: Synthetic ferromagnetic structure


DSF: Dual spin filter structure

DTB: Dual tunnel barrier structure

Everspin MRAM Technology: History

1st Gen. MRAM

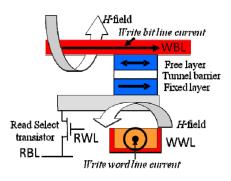

200 mm
Chandler/(Kulim) fab.
Toggle-mode MRAM
128 Kb ~ 16 Mb
AIO Based
180 nm/90 nm

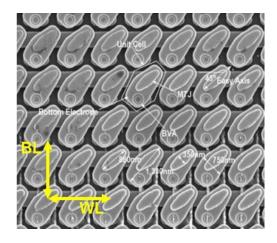
2nd Gen. MRAM

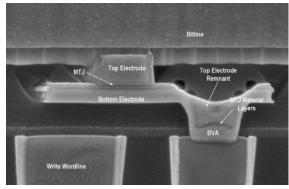
3rd Gen. MRAM

2017 ~
300 mm

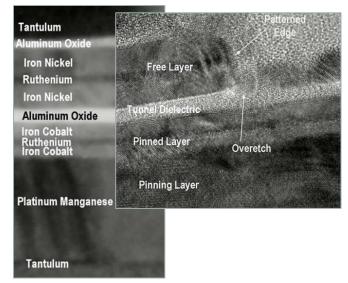
GF@Singapore fab.
pMTJ ST-MRAM
256 Mb ~ 1 Gb
MgO Based
40 nm (256 Mb)
28 nm/22 nm FDX (1 Gb, Dev.)



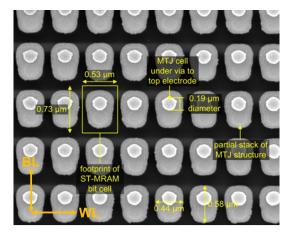


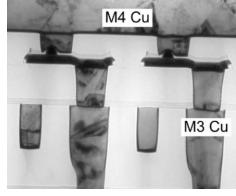

Everspin 1st Gen. MRAM: Toggle-mode MRAM

1st Gen. MRAM

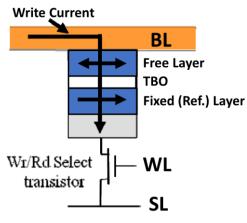

2006 ~ 200 mm Chandler/(Kulim) fab. Toggle-mode MRAM 128 Kb ~ 16 Mb AIO Based 180 nm/90 nm

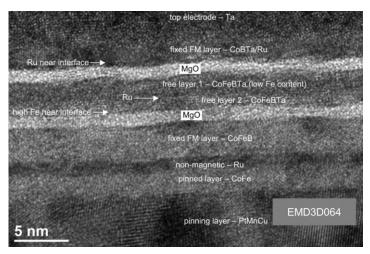
Cell Size: 1.24 µm² (@180nm)



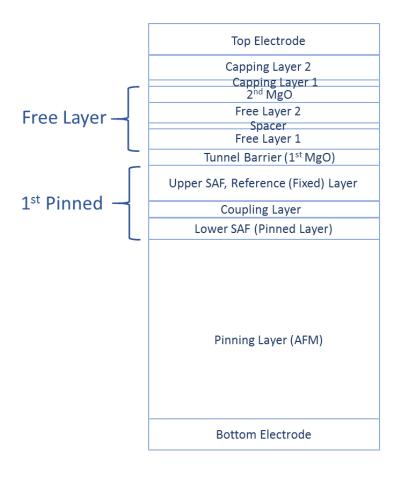


Everspin 2nd Gen. MRAM: In-plane ST-MRAM


2nd Gen. MRAM

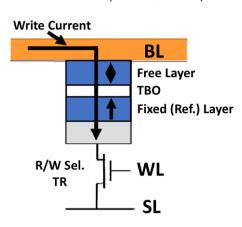

2014 ~ 300 mm GF@Singapore fab. In-Plane ST-MRAM 64 Mb/256 Mb MgO Based 90 nm

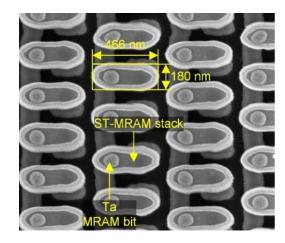
Cell Size: 0.38 µm²

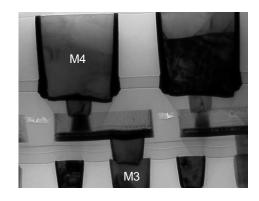


Everspin 2nd Gen. MRAM: In-plane ST-MRAM (64 Mb)

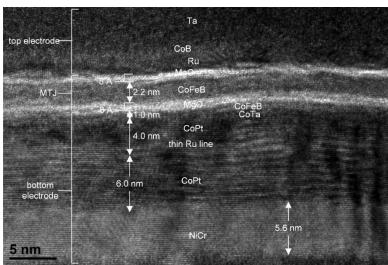
MRAM Structure



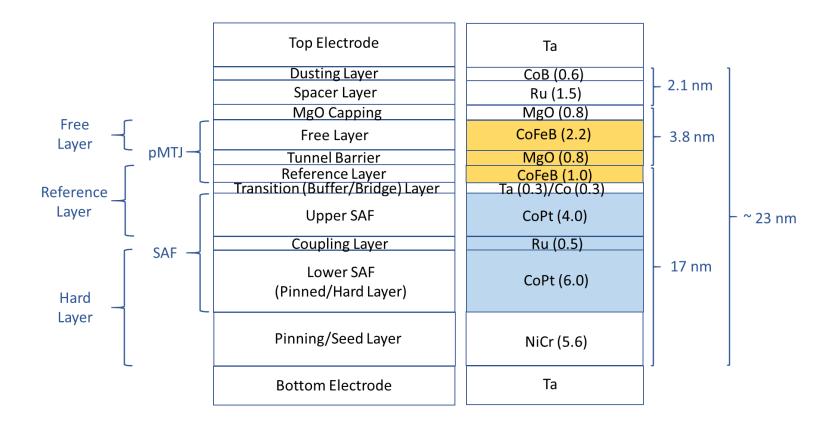



Everspin 3rd Gen. MRAM: pMTJ ST-MRAM

3rd Gen. MRAM


2017 ~
300 mm
GF@Singapore fab.
pMTJ ST-MRAM
256 Mb ~ 1 Gb
MgO Based
40 nm (256 Mb)
28 nm (1 Gb, Dev.)
22 nm FDX (1 Gb, Dev.)

Cell Size: 0.159 µm²


Comparison Everspin MRAM: 2nd Gen. vs. 3rd Gen.

Items		Everspin 2 nd Gen. MRAM (64 Mb)	Everspin 3 rd Gen. MRAM (256 Mb)	
Products		EMD3D064M DDR3 ST-MRAM	EMD3D256M DDR3 ST-MRAM	
Die Si	ze	65.3mm ² (11.15 mm x 5.86 mm)	100.1 mm ² (12.12 mm x 8.26 mm)	
Technology Node		90 nm	40 nm	
Memory / Die		64 Mb	256 Mb	
Bit Density		0.98 Mb/mm ²	2.56 Mb/mm ²	
Cell Size		0.387 μm²	0.159 μm²	
TE	TE	Ta (42 nm)	Ta (60 nm)	
	Top Fixed Layer	CoB/Ru	CoB/Ru	
	TBO 1	MgO (1.1 nm)	MgO (0.8 nm)	
MTJ	Free Layer	CoFeBTa (Low Fe)/Ru/CoFeTa (High Fe)	CoFeB (2.2 nm)	
	TBO 2	MgO (1.1 nm)	MgO (0.8 nm)	
	Bot. Fixed Layer (reference Layer)	CoFeB	CoFeB/CoTa/CoPt	
	Coupling Layer	Ru	Ru	
SAF BE	Pinned Layer	CoFe	CoPt	
	Pinning Layer (antiferromagnetic)	PtMn (18 nm)	NiCr (5.6 nm)	
	Conductor	Ta (27 nm)	Ta (20 nm)	

Everspin 3rd Gen. MRAM: pMTJ ST-MRAM (256 Mb)

■ MRAM Structure

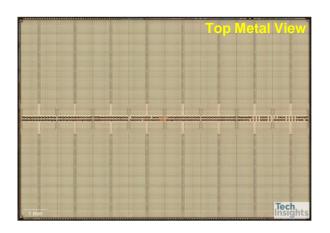
Comparison Everspin MRAM: 2nd Gen. vs. 3rd Gen.

■ MRAM Structure

Height

2nd Gen. MRAM Stack

Top Electrode	Ta		
Top Fixed Layer	CoFeBTa (2.0)		
Bridge Layer	Ru (0.4)		
2 nd MgÓ	MgO`(1.1)		
Free Layer 2	CoFeBTa (1.5)		
Spacer	Ru (0.4)		
Free Layer 1	CoFeBTa (1.5)		
Tunnel Barrier (1st MgO)	MgO (1.1)		
Upper SAF, Reference (Fixed) Layer	CoFeB (3.2)		
Coupling Layer	Ru (1.1)		
Lower SAF (Pinned Layer)	CoFe (1.9)		
Pinning Layer (AFM)	PtMn (18.0)		
Bottom Electrode	Та		


3rd Gen. MRAM Stack

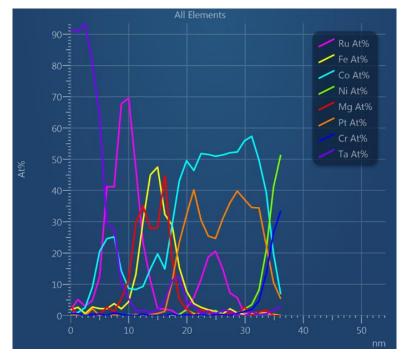

Та	Top Electrode		
CoB (0.6)	Dusting Layer		
Ru (1.5)	Spacer Layer		
MgO (0.8)	MgO Capping		
CoFeB (2.2)	Free Layer		
MgO (0.8)	Tunnel Barrier		
CoFeB (1.0) Ta (0.3)/Co (0.3)	Reference Layer		
Ta (0.3)/Co (0.3)	Transition (Buffer/Bridge) Layer		
CoPt (4.0)	Upper SAF		
Ru (0.5)	Coupling Layer		
CoPt (6.0)	Lower SAF (Pinned/Hard Layer)		
NiCr (5.6)	Pinning/Seed Layer		
Та	Bottom Electrode		

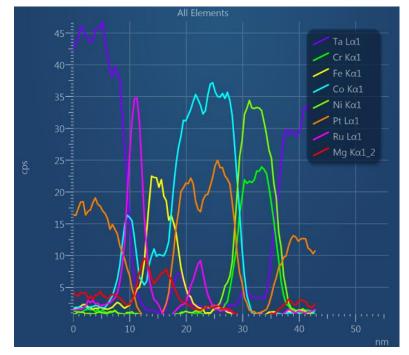
Everspin MRAM: 3rd Gen. Die Floorplan

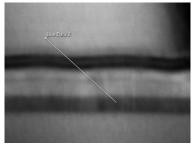
□ Die Floorplan

Functional Block Summary

· · · · · · · · · · · · · · · · · · ·					
Block Functional Description		Length (mm)	Width (mm)	Area (mm²)	Percentage of Die
A1 (x4)	Analog circuitry	Irregular		1.78	1.78
A2 (x4)	Analog circuitry	0.15 3.00		1.80	1.80
A3 (x16)	Analog circuitry	0.41	1.50	9.75	9.74
A4	Possibly voltage regulators	Irregular		0.34	0.34
C1 (x32)	Column circuitry	0.05	1.50	2.25	2.24
C2 (x64)	Column circuitry	0.09	1.50	9.00	8.99
C3 (x48)	Column circuitry	0.07	1.50	5.21	5.20
I/O 1	Address buffers	Irregular		2.27	2.27
I/O 2	Command circuitry	0.80	2.87	2.30	2.30
I/O 3	DQ buffers	0.80	5.88	4.71	4.71
R1 (x128)	Row circuitry	0.31	0.12	4.66	4.66
Sub-array (x256)	MRAM sub array	0.31	0.69	53.75	53.69
Total die utilization					97.72
Total die utilization: logic and memory				58.41	58.35
Total die utilization: analog				30.13	30.10
Total die utilization: I/O			9.28	9.27	
Other			2.29	2.28	
Total die		8.26	12.12	100.11	100.00

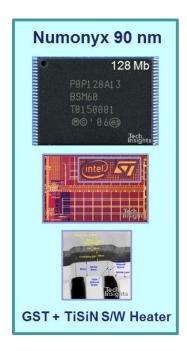

Report ID: MFR-1810-803

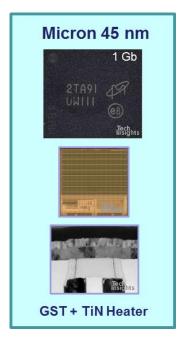


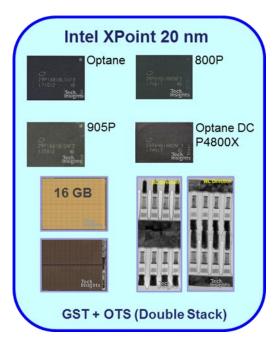

Ref. Materials Analysis

- MgO based Tunnel Barrier
- Ta not used for Free layer
- Pt added into Fixed Layer

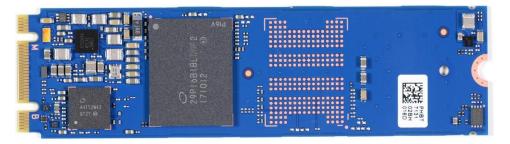
- Ni and Cr instead of Mn for Pining layer
- CoBTa/Ru Fixed layer
- Ta electrode (Top & Bottom)




XPoint Memory (Intel OptaneTM)

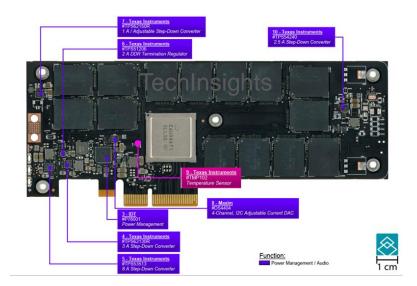


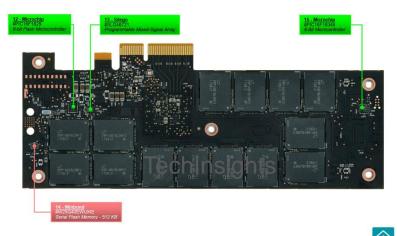
PCM Commercial Products: 2010 ~



2010 ~ 2012 2013 ~ 2014 2017 ~ 2018

XPoint Memory Die removed from Intel Optane™


- MD: PHBT713102BH016D (16 GB)
- Price: \$44 (16 GB), \$77 (32GB)
- XPoint Memory PKG: 29P16B1BLDNF2
- 16GB single die in a PKG



Intel XPoint Optane™ DC P4800X

Intel XPoint Optane™ DC P4800X

Side 1

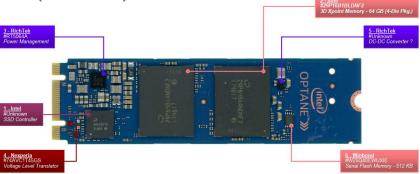
Side 2

XPoint 16 GB Memory x 14

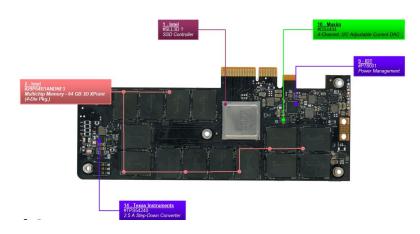
Intel SSD Controller
TI Converter x 4
TI Regulator
IDT Power Management
MXIM DAC
LED x 3
TI Temperature Sensor

XPoint 16 GB Memory x 14

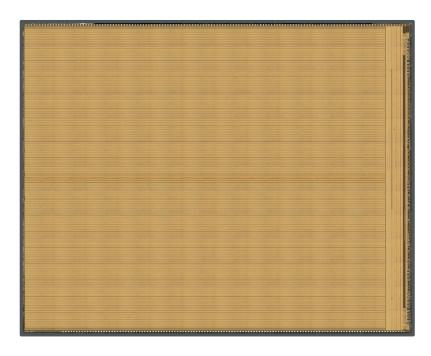
MicroChip Microcontroller x 2 Silego Mixed Signal Array Winbond Serial Flash Memory

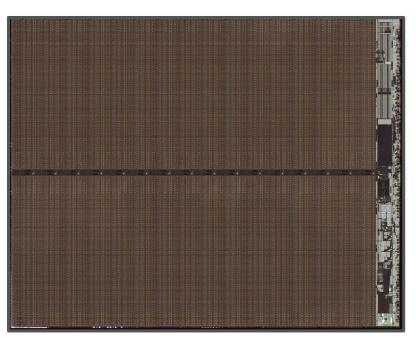

Total # Dies: 41

Total # XPoint Dies: 28


Intel XPoint Optane™ 800P & 905P

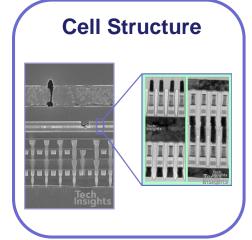
Optane 800P (118 GB)


Optane 905P (960 GB)



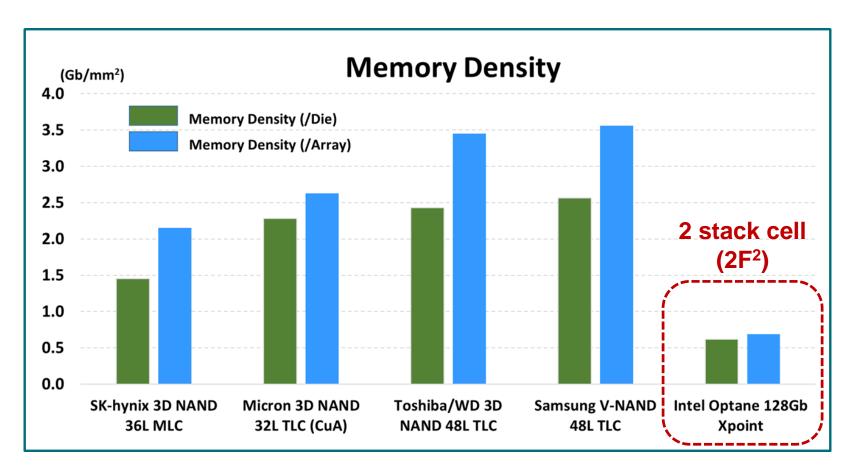
Die Photograph

Top Metal View



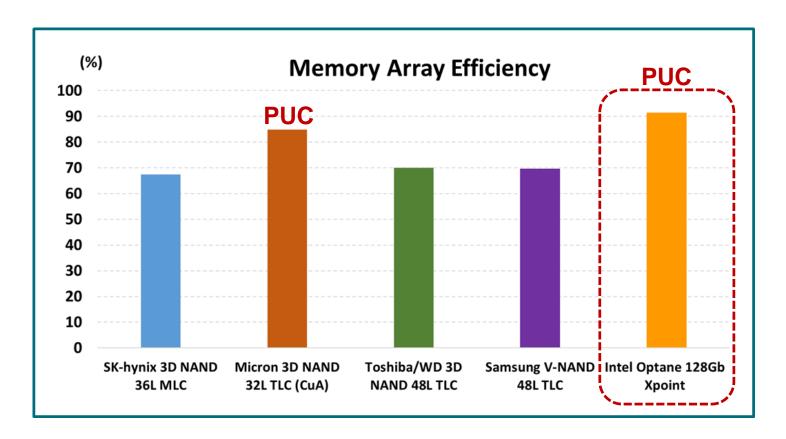
Bpoly Level View

Summary: XPoint Memory Technology

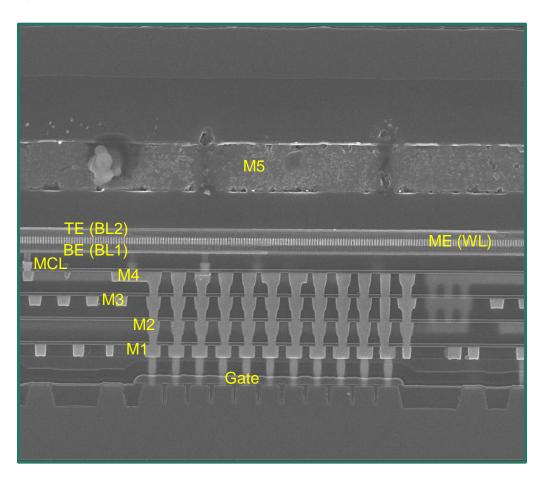

Device/Structure Summary

- 128 Gb/Die
- Die size: 206.5 mm²
- Technology Node: 20 nm
- Cell Size: 0.00176 µm²/cell
- Bit Density: 0.62 Gb/mm²
- GST based PCM
- Se-Ge-Si-As based OTS Selector
- PCM/OTS between M4 and M5
- 2 Cells stacked
- 9 Metal Layers in total
- Crystal PCM, Amorphous OTS

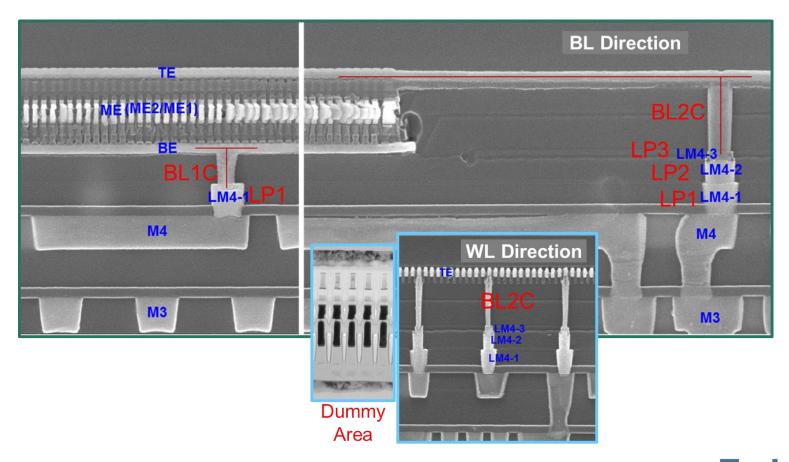
Comparison Memory Density: Intel XPoint vs. 3D NAND

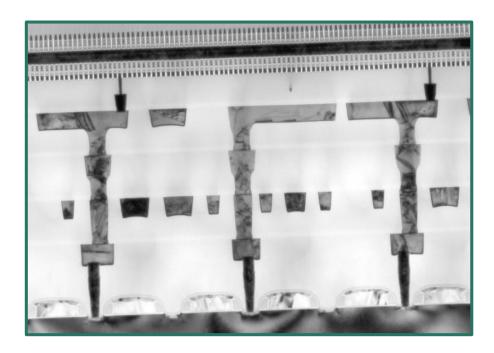

Quite lower memory density comparing with current 3D NAND products

Comparison Memory Efficiency: Intel XPoint vs. 3D NAND

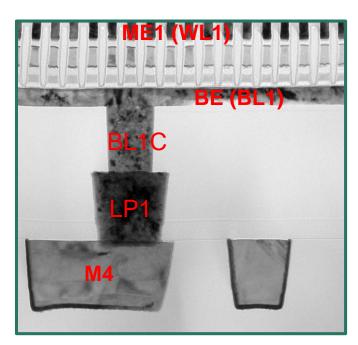

Apparent Memory Array Efficiency of 91.4 %

Overall XPoint Process/Layers

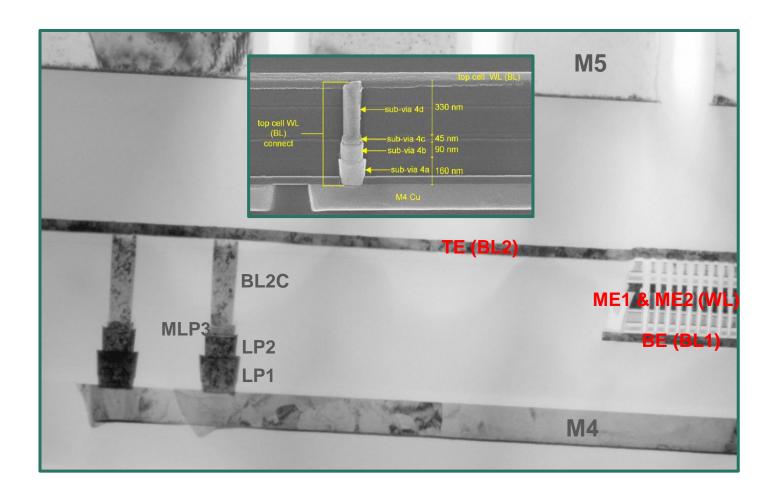

- 5 Metals, 1 Landing Metal Pad, Memory/Selectors
- Memory: TE/PCM/OTS/ME2/ME1/PCM/OTS/BE


BL Connections (TE/BE_BL direction, SEM)

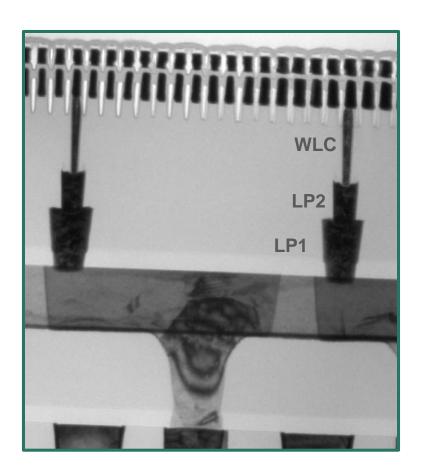
- BE CONT on LM4-1
- TE CONT on LM4-3/LM4-2



BL1 Connections (BE, TEM)

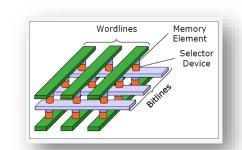

WL Direction

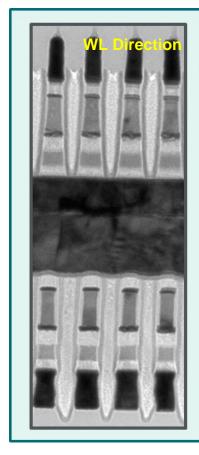
BL Direction

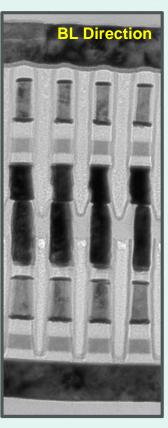

BL2 Connections (TE)

WL Connections (ME1 & ME2)

MCL, Memory Contacts


Memory Contact Landing Pad & Memory Contacts





Summary: Memory/OTS Materials (I)

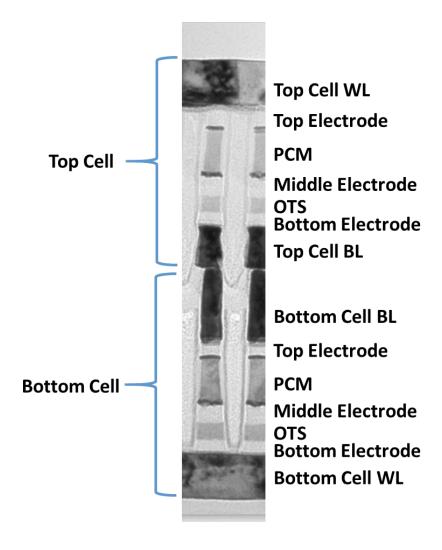
- Memory Layer with Ge:Sb:Te, likely 1:2:4
- TS with As doped Se-Ge-Si
- W/WN based Electrode (TE, ME1, ME2, BE)
- OTS selector not extended over ME or BE

Top Electrode (W/WN)

Memory: PCM (Ge₁Sb₂Te₄)

Selector: OTS (Se-As-Ge-Si)

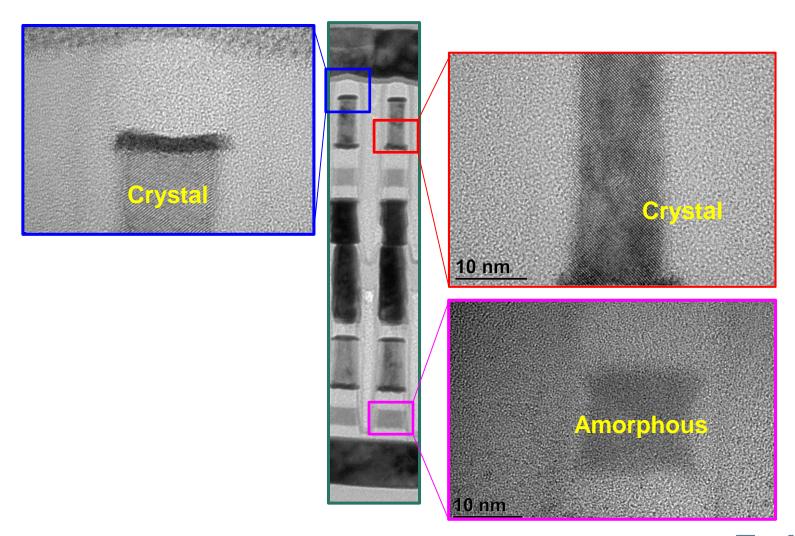
Middle Electrode (ME1, ME2)


Memory: PCM (Ge₁Sb₂Te₄)

Selector: OTS (Se-As-Ge-Si)

Bottom Electrode (W/WN)

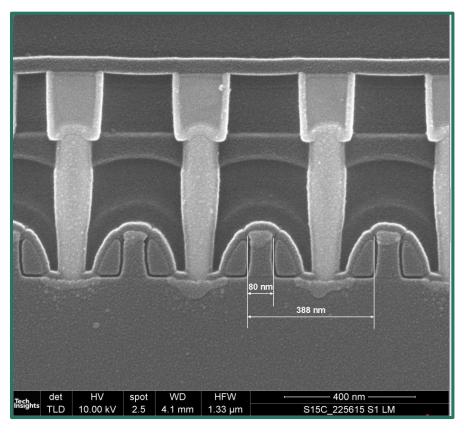
Summary: Memory/OTS Cell (2F2)

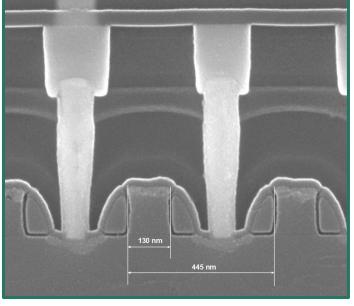


Materials Analysis (Memory Elements)_AME#1

Materials Analysis (Memory Elements)

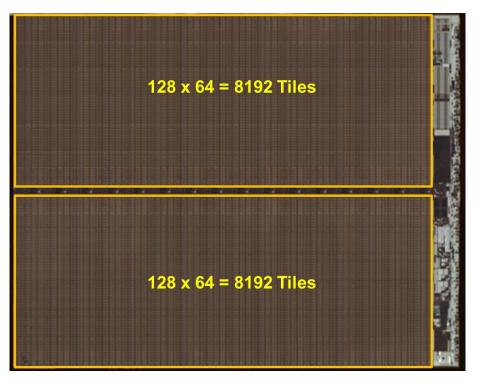
Memory Array Electrodes Pitch

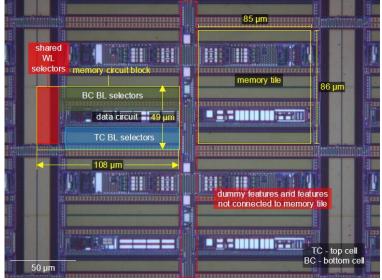

X-direction: 20 nm Half PitchY-direction: 20 nm Half Pitch



CMOS TRs

- Smallest Lg: 80 nm
- Lg: 80 nm & 130 nm used

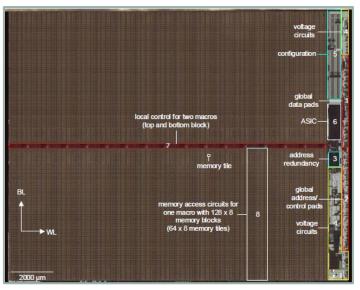


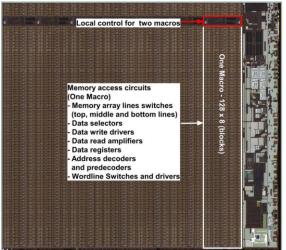


TechInsights Memory Functional Analysis Report (MFR)

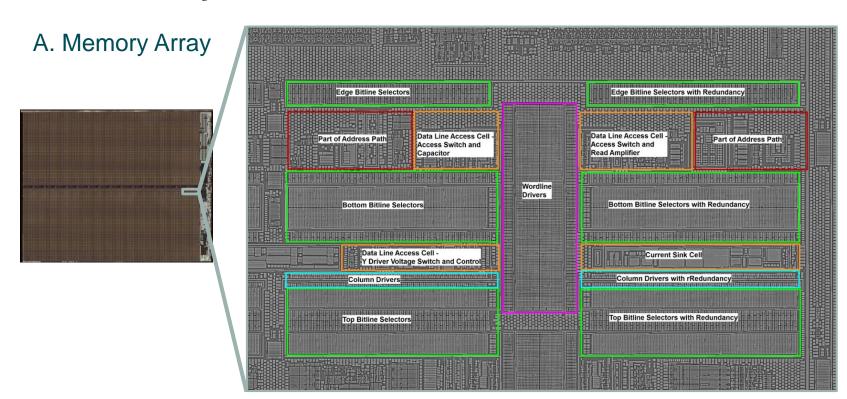
Memory Tiles (Memory Array)

Total # Tiles = 16,384 Memory/Die = 128 Gb Memory/Tile = 7.8125 Mb/Tile Memory/Stack/Tile = ~ 3.9 Mb/Tile





XPoint Memory Functional Blocks


Memory Array

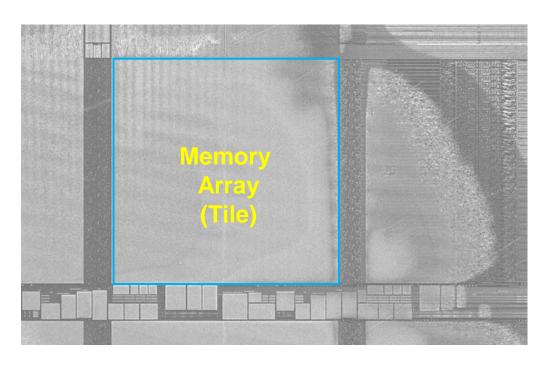
- 32 macro (Tile): 16 + 16
- 1 macro = 1024 blocks
- 1 block of cells with a two-cell stack (back-to-back arranged)
- 1 block = 1024 WLs/4096 BLs (2048 top BLs + 2048 bottom BLs)
- Memory Capacity
 - = 32 x 1024 blocks x 4 Mb
 - = 128 Gb (=16 GB)
- Redundant Cells per macro
 - = 128 blocks x 128 BLs x 1024 WLs
 - = 16 Mb

XPoint Memory Functional Blocks

B. Pad Assignment (Die)

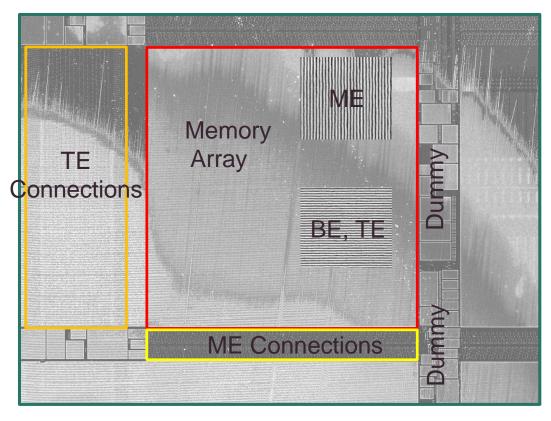
CV on XPoint Memory (Active Blocks)

DTL - Dummy top lines Regular memory block 1 Regular memory block 1 Unregular memory block 1 4 DTL: 4 DBL: 12 ATL: 12 ABL **DBL** - Dummy bottom lines 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL; 4 DBL; 12 ATL; 12 ABL 2048 TL; 2048 BL 2048 TL; 2048 BL ATL - Additional top lines 64 RTL: 64 RBL: 1024 ML: 4 DML ABL - Additional bottom lines 1024 ML; 4 DML 1048 TL: 2048 BL RTL - Redundant top lines 1024 ML; 4 DML **RBL** - Redundant bottom lines TL - Top lines Regular memory block 1 Unregular memory block 2 Regular memory block 1 **BL** - Bottom lines 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL ML - Middle lines 2048 TL: 2048 BL 64 RTL; 64 RBL; 2048 TL: 2048 BL DML - Dummy middle lines 1024 ML; 4 DML; 4 AML 2048 TL; 2048 BL 1024 ML; 4 DML; 4 AML AML - Additional middle lines 1024 ML; 4 DML; 4 AML Regular memory block 1 Regular memory block 1 **Unregular memory block 1** 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL 2048 TL: 2048 BL 64 RTL: 64 RBL: 2048 TL: 2048 BL 1024 ML; 4 DML 2048 TL: 2048 BL 1024 ML: 4 DML 1024 ML: 4 DML Unregular memory block 2 Regular memory block 1 Regular memory block 1 4 DTL: 4 DBL: 12 ATL: 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL 4 DTL; 4 DBL; 12 ATL; 12 ABL 2048 TL: 2048 BL 64 RTL: 64 RBL: 2048 TL: 2048 BL 2048 TL; 2048 BL 1024 ML; 4 DML; 4 AML 1024 ML: 4 DML: 4 AML 1024 ML; 4 DML; 4 AML Regular memory block 1 Regular memory block 1 Unregular memory block 1 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL: 4 DBL: 12 ATL: 12 ABL 2048 TL; 2048 BL 2048 TL: 2048 BL 64 RTL; 64 RBL; 1024 ML; 4 DML 1024 ML: 4 DML 2048 TL: 2048 BL 1024 ML: 4 DML Regular memory block 1 Regular memory block 1 Unregular memory block 2 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL; 4 DBL; 12 ATL; 12 ABL 4 DTL; 4 DBL; 12 ATL; 12 ABL 2048 TL: 2048 BL 2048 TL; 2048 BL 64 RTL: 64 RBL: 1024 ML; 4 DML; 4 AML 1024 ML; 4 DML; 4 AML 2048 TL: 2048 BL 1024 ML; 4 DML; 4 AML

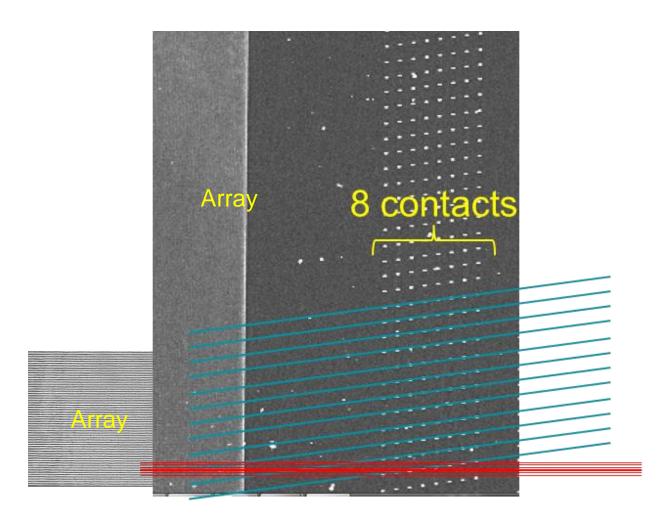

WLs and # BLs (Memory Tile)

```
# BL/Tile = ~ 1,980 (Active BL only),

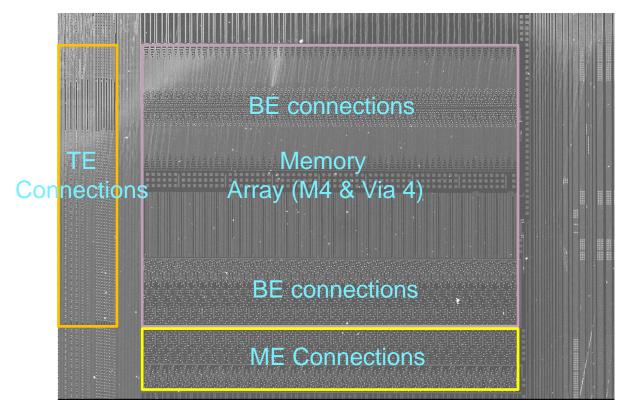
~ 2,150 (Including dummy area)


# WL/Tile = ~ 1,980 (Active WL only)

~ 2,150 (Including dummy area)
```



Top View SEM Analysis (Memory Array)

Memory TE, ME, BE level

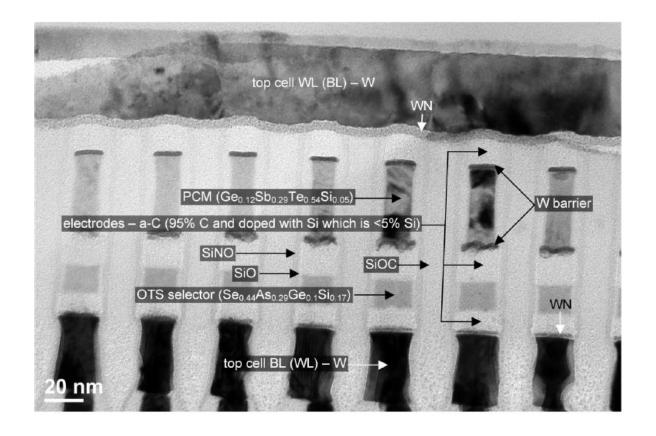


ME (Shared WL) Inter-connection: Contact Design

Top View SEM Analysis (Memory Array)

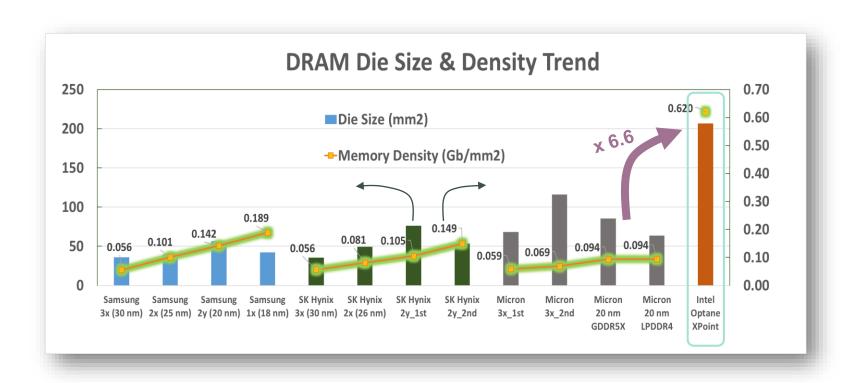
M4 level (just under Memory BE layer)

TechInsights Memory Process Flow (PFA & PFF)

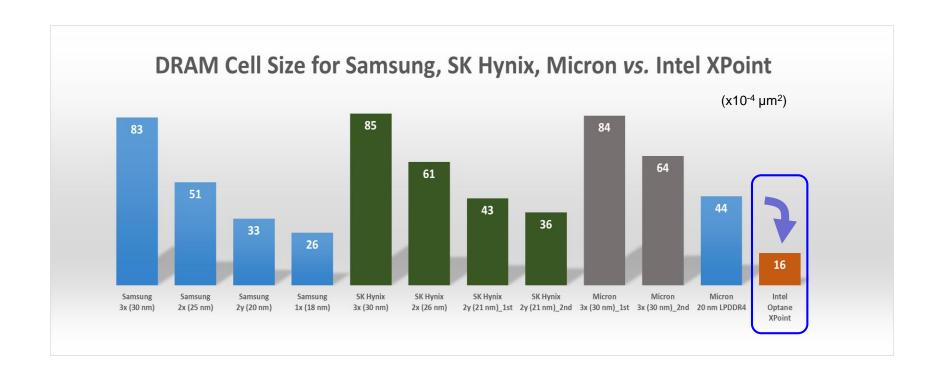

Process Flow and Integration

- # Masks: 43 (estimated)
- For Memory/Selectors
 → 17 Masks added

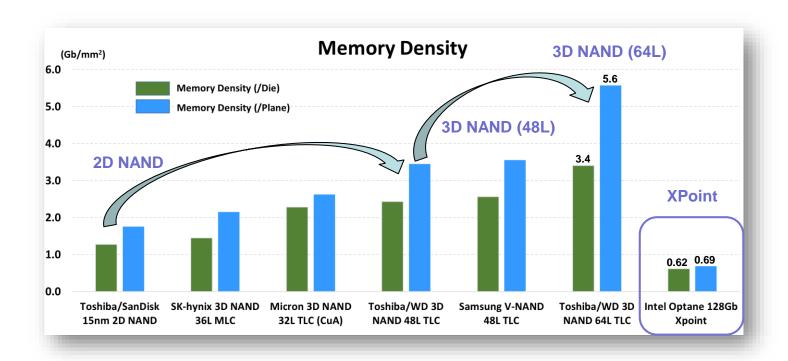
Mask#	Layer Name	Description	EUV	193i	ArF	KrF	i-line	Mask
1	ACTIVE	Active Lithography	EUV	1931	AIF	1	I-IIIIe	1 IVIASK
2	PWE	P-Well Lithography				1		1
3	HVN VTH	HVN VTH Adjust Lithography				1		1
4	RVN VTH	RVN VTH Adjust Littlography				1		1
5	DPW	Deep P-Well Lithography				1		1
	NWE	N-Well Lithography				1		1
6 7	HVP VTH	HVP VTH Adjust Lithography				1		1
_								
8 9	RVP VTH	RVP VTH Adjust Lithography				1		1
_	LVOX	LV OX. Lithography						1
10	NGT	NMOS Gate Open for Gate IIP				1		1
11	PGT	PMOS Gate Open for Gate IIP				1		1
12	RST	RST Photo	-			1		1
13	GATE	Polysilicon Gate Lithography	-			1		1
14	NSD	NSD Lithography				1		1
15	PSD	PSD Lithography				1		1
16	CN	Contact Lithography				1		1
17	M1	M1 Lithography				1		1
18	V1	V1 Lithography				1		1
19	M2	M2 Lithography				1		1
20	V2	V2 Lithography				1		1
21	M3	M3 Lithography				1		1
22	V3	V3 Lithography				1		1
23	M4	M4 Lithography				1		1
24	LP1	LP1 Lithography				1		1
25	LP2	LP2 Lithography				1		1
26	BLC1	BLC1 Lithography			1			1
27	BC BL BLK	B Cell Periphery Cell Stack Clear Lithography				1		1
28	BC BL	BC_BL Lithography		1				1
29	BC BL Cut	BC_BL Cut Lithography				1		1
30	LP3	LP3 Lithography				1		1
31	WLC	WLC Lithography			1			1
32	BC WL	BC_WL Lithography		1				1
33	BC WL Cut	BC WL Cut Lithography				1		1
34	TC WL BLK	T Cell Periphery Cell Stack Clear Lithography				1		1
35	TC WL	TC_WL Lithography		1				1
36	TC WL Cut	TC WL Cut Lithography				1		1
37	BLC2	BLC2 Lithography			1			1
38	TC BL	TC_BL Lithography		1				1
39	TC BL Cut	TC BL Cut Lithography				1		1
40	TC BL Fill Periphery Remove	TC BL SiOC Fill Area Cut Lithography				1		1
41	V4	V4 Lithography				1		1
42	M5	M5 Lithography				1		1
43	PAD	Pad Open Photo					1	1
	Total		0	4	3	35	1	43


Materials Analysis (AME#2)

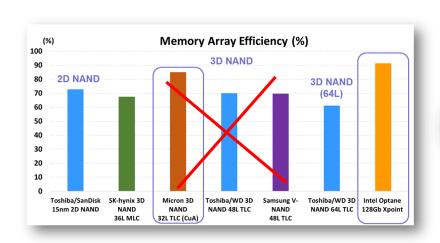
Comparison Memory Density: XPoint vs. DRAM

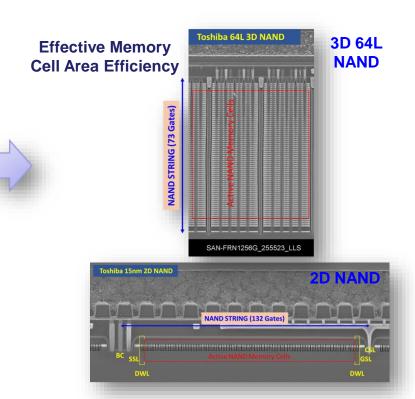

Memory Density: x3.2 (vs. SS 18nm DRAM), x6.6 (vs. M 20nm DRAM)

Comparison Cell Size: XPoint vs. DRAM


Memory Cell Size: 58% (vs. SS 18nm DRAM), 36% (vs. M 20nm DRAM)

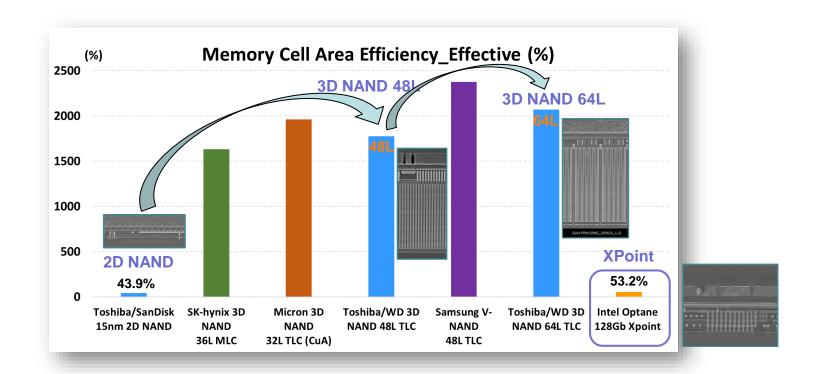
Comparison Memory Density: XPoint vs. NAND


Memory Density: 24% (vs. SS 48L V-NAND TLC), 18% (vs. Toshiba/SanDisk 64L)

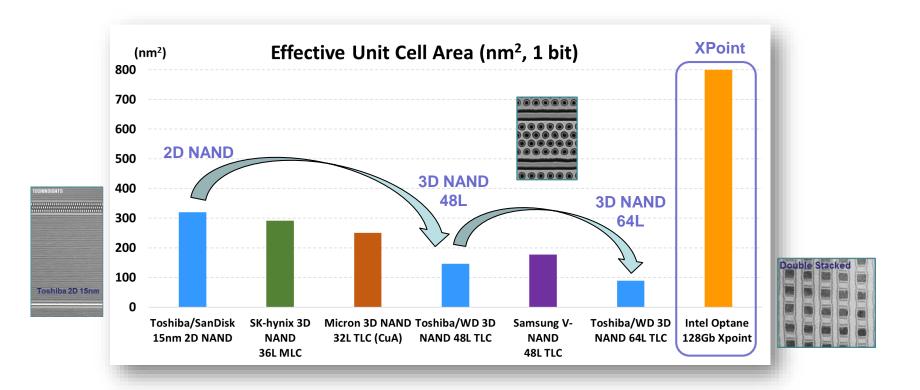


XPoint vs. 3D NAND: Array Efficiency

Apparent Memory Array Efficiency ... may not represent



XPoint vs. 3D NAND: Array Efficiency


Comparison <u>Effective</u> Memory Cell Area Efficiency: Higher the better

XPoint vs. 3D NAND: Unit Cell Area

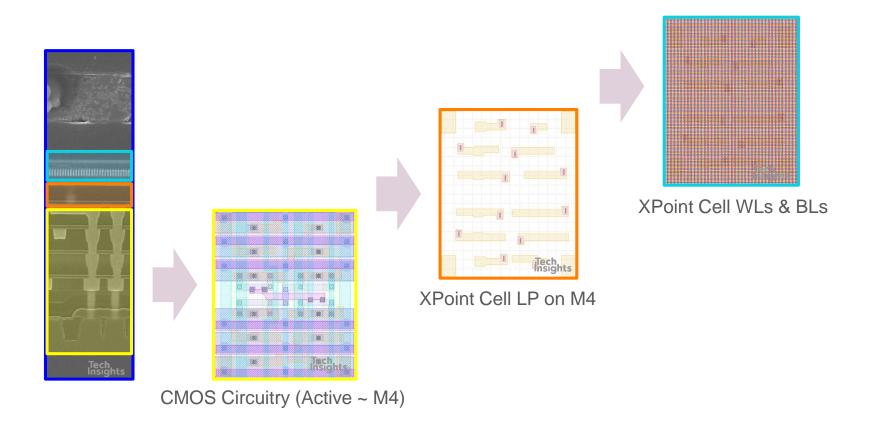
Comparison Effective Unit Cell Area: Lower the better

XPoint Memory is

vs. DRAM

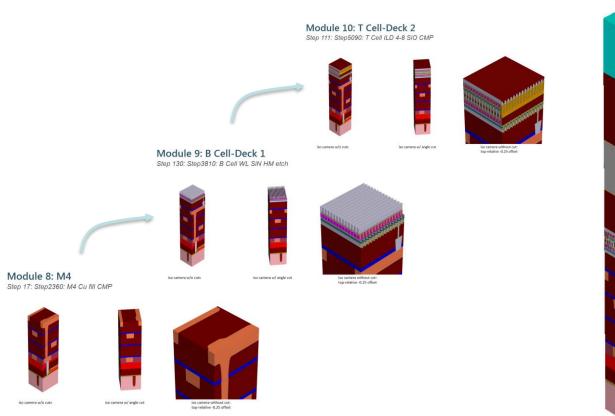
6 times denser than Micron 20 nm DRAM

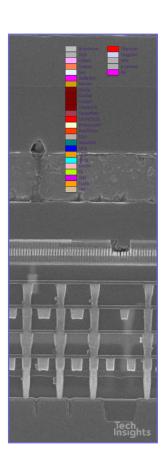
3 times denser than Samsung 1x DRAM


vs. NAND

18% memory density of Toshiba/SanDisk 64L NAND Higher memory cell area efficiency than 2D NAND Quite lower cell area efficiency than 3D NAND

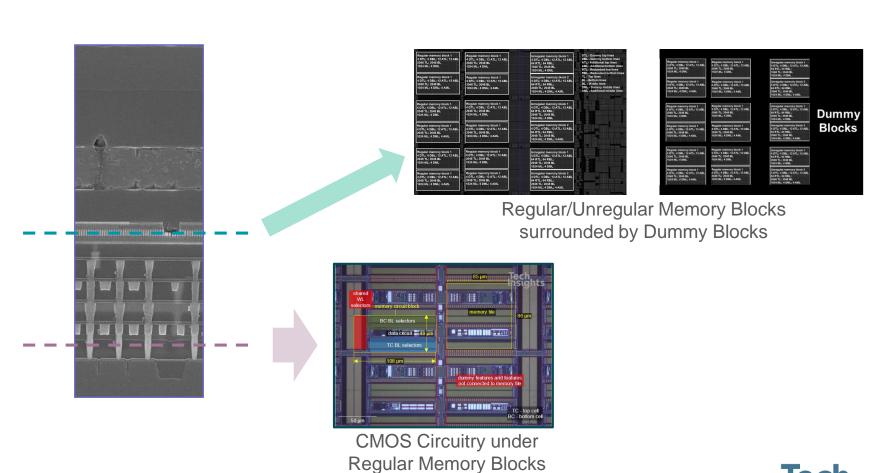
TechInsights Memory Process Flow (PFA & PFF)

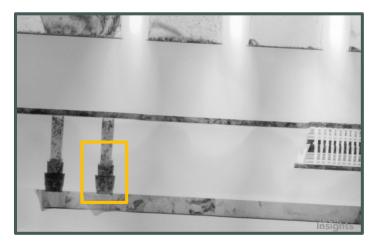

XPoint Cell Design & Process Flow

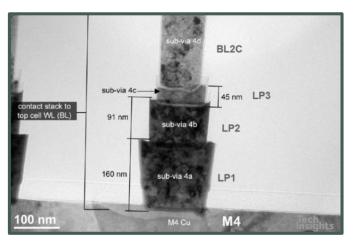


TechInsights Memory Process Flow (PFA & PFF)

XPoint Process Flow



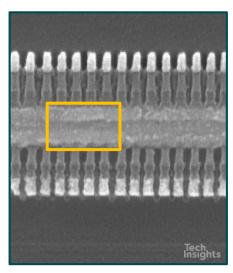

Dummy Memory Blocks/Patterns (Memory Elements Level)



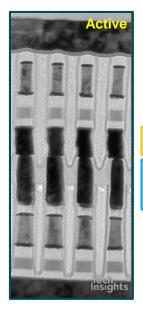
■ WL & BL Landing Pads (LP)

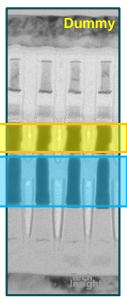
✓ Additional #Masks, Throughput/Cost

WL & BL Interconnection

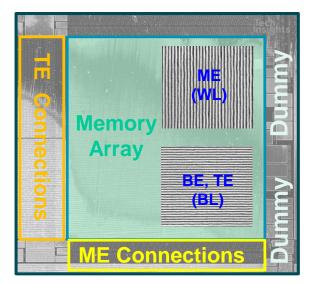


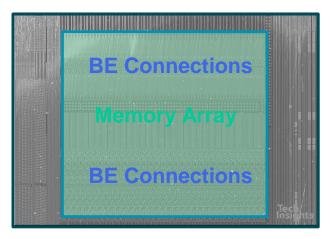
Multi-LPs on M4


■ Back-to-Back Memory Elements


✓ 2-Step WL (Tungsten) Process: 2Photo + 2Etch + 2Depo

ME (WL) Tungsten WL

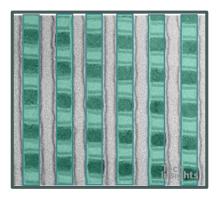




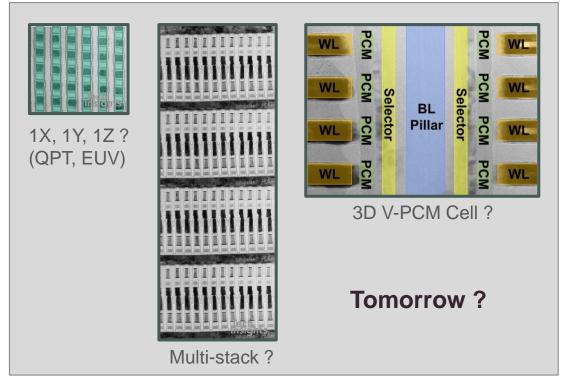
■ Inter-connection Area

- ✓ Interconnection for double stack cell structure
- ✓ What if more than double stack?

Memory Element Level

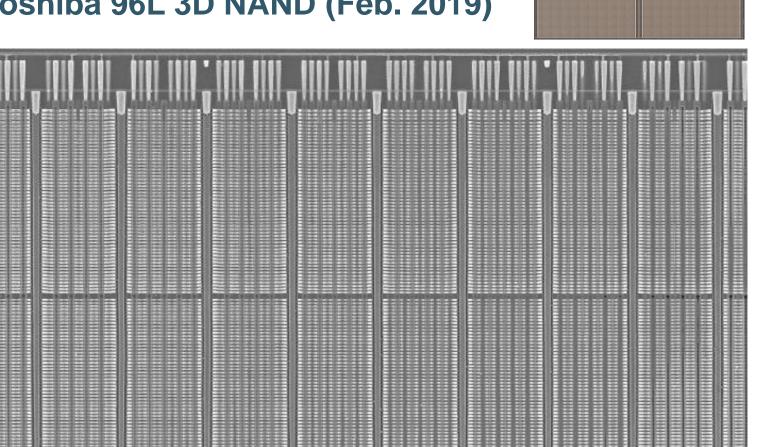


M4 Level Under Memory Elements


■ XPoint Scaling Down

Today

20 nm WL & BL HP (DPT)



Ref. Samsung Z-SSD (4Q2018)

Items	Samsung 48L TLC NAND Die	Samsung Z-NAND Die	
Parent Products	Example: K9DUGB857M Portable T3 2TB SSD	H9QHGB8J0M-CCB0 Z-SSD MZ-PZA960 (960 GB)	SAMSUNG
Die Markings	K9AFGD8U0M	K9FCGD8J0M	
Memory Cap. / Die	256 Gb	64 Gb NVMe SSD 983 ZE	T AIC ustainable Performance 960GB
Die Description	TLC	SLC Z-SSD 983 ZET NOSA	SAMSUNG
Die Size	99.84 mm ² (7.8 mm x 12.8 mm)	101.26 mm ² (8.3 mm x 12.2 mm)	Model: MZ-PZA980 ###################################
Bit Density	2.56 Gb/mm ²	0.63 Gb/mm ²	CONTROL CONTRO
Array Area Efficiency	70.0 %	51.8 %	A STATE OF THE STA
Tech. Node	48L 3D V-NAND	48L 3D V-NAND	SEC 837 CCBO
# Dies / PKG	16 NAND Dies + 2 F-Chips	8 NAND Dies + 1 F-Chip	(9QHGB8JOM
# Planes	2	8	64800898
Die Photograph			1 cm -

Ref. Toshiba 96L 3D NAND (Feb. 2019)

EHT = 5.00 kVWidth = 13.87 µm

FSTO_256G_336644_LLS

TechInsights Memory Products/Subscription

You can find more information from TechInsights Memory Subscription Products.

Memory Subscription	Contents	Target Devices
AME (ACE)	Advanced Memory Essential	Memory All
PFA	Process Flow (Run Sheet)	Memory All
PFF	Process Flow 3D Emulation	NAND, DRAM, XPoint
BRF	Products/Technology Summary	NAND, DRAM, Emerging
MFR	Memory Die Functional Block & Die Floorplan Analysis	Memory All
MDC	Memory Design on Cell Array	Memory All
MDP	Memory Design on Periphery (Decoder, S/A, Page Buffer, I/O)	Memory All
CAR	Circuit Analysis Report	NAND, DRAM, XPoint
TCR	Transistor Characteristics	NAND, DRAM, XPoint
WFR	Wave Form Analysis	DRAM/NAND/Emerging

Thank You!

For more information, please contact:

Jeongdong Choe: jchoe@techinsights.com