
Memory shrink N7 to N5P

Iterative loop is applied through PLC

Dumb-shrink → **Memory Technology**

		_				
	HC (high current) 122	HSHC (high density) 122	HC macro	HD (high density) 111	HSHD (high density) 111	HD macro
Area	75	5%	77%	78	3%	77%
Performance	-14% Iread	-1% Iread	11%	-16.5% Iread	-2% Iread	13%
Dynamic Power	-3%		-8%	-4%		-9%
Leakage (Istby)	1.05x	2.2x	-30%	1x	1.5x	-38%
Assists	NA/optional	NA/optional	t //	WA		

SRAM Comparison (HD)

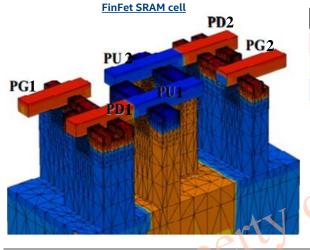
- N5 SRAM with aggressive cell size shrinkage. And offer same Vmin as all generations and same write assist amount...
- N5 introduce white space reduction for area further shrinkage 5%.

HD	N7	N5
SRAM Cell	0.0274	0.0214
xFP	8	7.5
SRAM Cell Shrink (%)	76%	78%
OD Pitch	30	28
PO Pitch	57	51
OD-PO Shrink (%)	81%	84%
Vmin	+0	+0
sb (nA) 0.75V TT 125C	0.8	0.7
Speed (ps) CV/I, TT	0.246	0.249
Design-Assist	WA	WA
Macro Area (LEF to LEF)	REF	73.5%
Macro Area (white space reduction	OF	70%

N5P v0.9 SRAM Offering (1)

Corner tighten, similar speed at corner

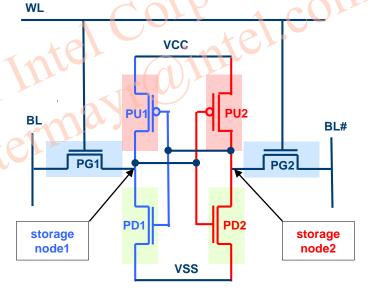
N5P SRAM (vs N7 v1.1)	HC N5P V0.5			HSHC N5P V0.9 (vs N7 HC	
Cell Size (um^2)	0.0257	0.0257	0.0257	0.0257	
Shrink	75%	75%	75%	75%	
Delay CV/I @0.75V (TT, 25C)	-3%	-3%	-21%	-20%	
Iread	-14%	-14%	+1%	-1%	
sb@0.75V TT 25C	1.1X	1.05X	2.2X	2.2X	
Isb (FFG 85C)	1.0X	0.85X	3.0X	3.0X	
Vmin	675mV	675mV	675mV	675mV	
R/W Asstssit	NA	NA	NA	NA	

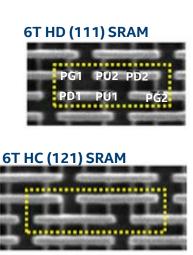

N5P v0.9 SRAM Offering (2)

Corner tighten, more speed gain at corner

N5P SRAM (vs N7 v1.1)	HD N5P V0.5	HD N5P V0.9	HSHD N5P v0.5 (vs N7 HD)	HSHD N5P V0.9 (vs N7 HD)
Cell Size (um^2)	0.0214	0.0214	0.0214	0.0214
Shrink	78%	78%	78%	78%
Delay CV/I @0.75V (TT, 25C)	-3%	-4%	-22%	-21%
Iread	-17.5%	-16.5%	-2%	-2%
lsb@0.75V TT 25C	1.0X	1.0X	1.6X	1.5X
Isb (FFG 85C)	0.7X	0.62X	1.7X	1.65X
Vmin	675mV	675mV	675mV	675mV
R/W Asstssit	WA	WA	WA	WA

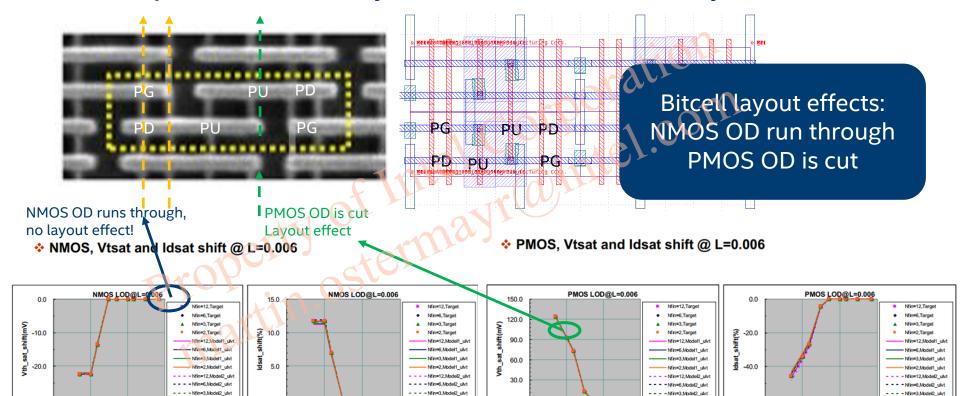
- HSHD write assist amount is under evaluation
- All SRAM target is subject to be changed.


Memory Bitcell Technology



	Description	
PU	Pull up	pFET
PD	Pull down	nFET
PG	Pass gate	nFET

	Description	
BL	Bitline	BL for storage node 1
BL#, BLB	Bitline bar	BL for storage node 2
WL	Wordline	


xed width and length (FinPitch and PolyPitch)

→ tune the SRAM cell by number of fin's

Device impact on memory bitcell architecture (layout effects)

0.0

TSA1/TSB1(um)

-60.0

0.01

TSA1/TSB1(um)

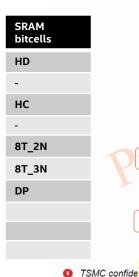
- - Nfin=2,Model2_ulvt

0.01

TSA1/TSB1(um

- Nfin=2.Model2_ulvt

0.01


TSA1/TSB1(um)

- - - Nfin=2,Model2_ulvt

Dump Shrink & Technology Bitcell offering

N7 SRAM

N5P SRAM Vt Proposal (Q3'19)

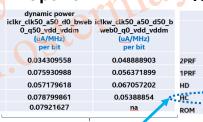
SRAM Vt	6	Т	RP/DP/
(vs. Logic)	PU	PG/PD	Compare
HD	SVT	LVT_LL	
HSHD	LVT	LVT	
HC	SVT	LVT_LL	
нѕнс	ULVT_LL	LVT	
8T_2N (400)	SVT	LVT_LL	ULVT_LL
8T_3N (428)	SVT	LVT_LL	ULVT_LL
DP	SVT	LVT_LL	LVT_LL
10T	SVT	LVT_LL	ULVT_LL
HP2 8T	SVT	LVT_LL	ULVT
HP2 10T	SVT	LVT_LL	ULVT

→ Mixing up memory IP and
PPA shrink!

Change in bitcell offering is our fault

→ Intel requested it ⊗

Memory compiler 3rd party IP impact


Thunder Bay Harbor (THB) memory content

Synopsys N7 Memory leakage/dynamic power

leakage SRAM ref standby SRAM ref power OFF leakage TT SRAM ref retention leakage TT 25degC leakage TT 25degC VDD=0.75V 25degC VDD=0.55V (periphery off, Memory content lost) VDDM=0.75V [nA/bit] VDDM=0.525V [nA/bit] VDD = 0.55V VDDM 0.525V [nA/bit] 0.280241242 0.07168774 0.017990286 0.111254785 0.02839581 0.00504106 0.037010477 0.008463197 0.002224324 0.001613665 0.049712827 0.016193336 0.002343828 0.000570947

	leakage		dyna	mic power
SRAM ref standby leakage TT 25degC VDD=0.75V VDDM=0.75V [nA/bit]	SRAM ref retention leakage TT 25degC VDD=0.55V VDDM=0.525V [nA/bit]	SRAM ref power OFF leakage TT 25degC (periphery off, Memory content lost) VDD = 0.55V VDDM 0.525V [nA/bit]	iclkr_clk50_a50_d0_bw eb0_q50_vdd_vddm (uA/MHz) per bit	iclkw_clk50_i 0_q0_vdd_vd (uA/MHz) per
0.322277	0.07219	0.0318428	0.046317903	0.055
0.120155	0.034643	0.0074608	0.046317903	0.055
0.042192	0.013456	0.0029361	0.058895006	0.080
0.069101	0.028338	0.0027755	0.066191883	0.065
0.002039	na	0.00007422	0.035647321	
*****************				1

Leakage: values are in A br → Need to be multiplied with amount of bit per state Dynamic Power: values are in uA per bit

→ Need to be multiplied with WW (word-width) to be read/write

30% difference in 3rd party IP

Leakage: values are in mA/bit.

→ Need to be multiplied with amount of bit per state

TSMC N7 Memory leakage/dynamic power

Dynamic Power: values are in (MA/M)

per bit

Need to be multiplied with WV

→ Need to be multiplied with WW (word-width) to be read/write

a50 d50 bweb

er bit

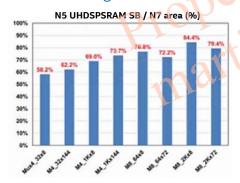
5244461

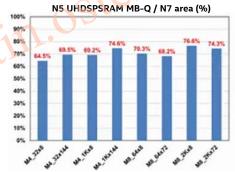
5244461

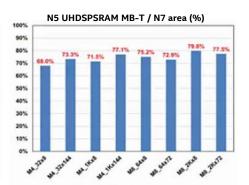
0468642

5205133

N7 to N5 memory bitcell and compiler area scaling


HC cell


- Bitcell scaling: 75.2%
- Macro scaling: 77% based on GPU/SoC benchmark
 - → Macro scaling dependency on array size, CM and Bank



HD cell

- Bitcell scaling: 78.3%
- Macro scaling: 77% based on Intel SoC

Memory compiler N7 to N5P evolution

PPA Comparison 1Kx32

	28HPM	28HPC	28HPC+	16FF+ LL	16FFC/12FFC	16FF+ GL	N7	N5
Silicon Area	×	×	×	0.7x	0.7x	0.7x	0.30x	0.23 77
Freq (SS_Vnom-10%40C)	y (1.6Ghz)	1.1y	1.3y	1.5y	1.5y/1.6y	1.75y	70000	11%
Leakage (FFG_Vnom+10%_125C)	z	0.73z	0.8z	0.42z	0.45z	0.5z	0.30z	30% ²¹
Dynamic Power (FF_Vnom+10%_125C)	р	1.0p	0.97p	0.85p	0.85p	0.85p	0.70p	

Memory options impacting PPA and shrink

- bank

- bist mux in hip
- center decode
- column mux
- power gating
- _dual rail
- periphery vt
- read assist
- repair
- scan in hip
- word depth
- word width
- write assist

N7 Synopsys Memory Compiler Offering

	6T 1rw	6T 1rw	8T 2rw	8T 2PRF 1r1w	2T 1r	6T 1rw	6T 1rw	6T 1rw (de	6T 1r1w ouble pumped)	6T 1rw	6T 1r1w (double pumpe
	High Speed SP SRAM (1RW)	High Speed Mini- SRAM	High Density DP SRAM	High Density Register File w/ 2 clocks	High Density ROM	High Density SP SRAM	High Density 1P RF	Ultra High Density SP SRAM	(1R1W /w 1 clk but 1M bit)	Ultra High Density 1P RF	Ultra High Density 2P RF
Total bits	256 - 1280k	64-128k	256 - 1280k	64-128k	256 -1280k	256 - 2560k	64-256k	256 - 2560k	256 - 1280k	32-10K	64-128k
Word range	32-16K	8-1K	32-16K	8-1K	64 - 64k	32-32K	8-2K	32-32K	32-32K	4-256	8-1K
I/O range	8-320	8-256	8-320	8-256	4-160	8-320	8-256	8-320	8-320	4-160	8-256
Column mux	4,8,16	2,4	4,8,16	1,2,4	8,16, 32,64	4,8,16	1,2,4	4,8,16	4,8,16	1	1, 2,4
Bank	1,2,4,8	1,2	1,2,4,8	1,2	1,2,4,8	1,2,4,8	1,2	1,2,4,8	1,2,4,8	1	1,2
Redundancy	C,R	С	C,R	С		C,R	С	C,R	C,R		С
Periphery Vt Options	LVT, uLVT	LVT, uLVT	SVT, LVT, uLVT	SVT, LVT, uLVT	SVT, LVT	SVT, LVT	SVT, LVT	SVT, LVT	LVT, uLVT	SVT, LVT	SVT, LVT
Bitcell	1-2-2 (0.0342)	1-2-2	1-2-2-4	1-2-2-2 (0.049)	Logic	1-2-2	1-2-2	1-1-1 (0.0274)	1-2-2	1-2-2	1-2-2

[·] Optional assist circuitry for robust low voltage operation

Memory Compiler Range

Subject to Change 8T 2PRF								(double pumped)					
Oubject	6T 1rw	6T 1rw	8T 2rv	8T 2rw 1r1w 2T 1			6T 1rw	6T 1rw (double pumped)			6T 1rw		
N5	High Speed SP SRAM	High Speed 1P RF Cache	High Density DP SRAM	High Density 2PRF	High Density ROM	High Density SP SRAM	High Density 1P RF	Ultra High Density SP SRAM	Ultra High Density 2P SRAM	Ultra High Density 2P RF	Ultra High Density 1P RF	тсам	
Total bits	256 - 1280k	128-288k	256 - 1280k	64-128k	256 -1280k	256 - 2560k	128-256K	256 - 2560k	256 - 2560k	128-256k	128-256K	256-80K	
Word range	32-16K	16-2K	32-4K	8-1K	64 - 64k	32-32K	16-2K	32-32K	32-32K	8-2K	16-2K	32-512	
I/O range	8-320	8-288	8-320	8-256	4-160	8-320	8-256	8-320	8-320	16-256	8-256	8-160	
Column mux	4,8,16	2,4	4*	1,2,4	8,16,32,64	4,8,16	1,2,4	4,8,16	4,8,16	1,2,4	1,2,4,8	1	
Bank	1,2,4,8	1,2	1,2,4,8	1,2,4,8	1,2,4,8	1,2,4,8	1,2	1,2,4,8	1,2,4,8	1,2	1,2	1	
Redundancy	C,R	С	C,R	С	-	C,R	С	C,R	C,R	С	С	С	
Periphery Vt Options	eLVT, LVT, ULVT	eLVT, LVT, ULVT	SVT, LVT, ULVT	SVT, LVT, ULVT	SVT, LVT, ULVT	SVT, LVT, ULVT	SVT, LVT, ULVT	SVT,LVT, ULVT	SVT,LVT, ULVT	SVT, LVT,ULVT	SVT, LVT,ULVT	SVT, LVT,ULV	
Bitcell	1-2-2	1-2-2	1-2-2-4	1-2-2-2	Logic	1-2-2	1-2-2	1-1-1	1-2-2	1-2-2	1-1-1	1-2-2	
Bitcell (Area)	0.0257	0.0257		0.0428, HC		0.0257	0.0257	0.0214	0.0257	0.0257	0.0214		

For High Speed SP SRAM & 1P RF Cache

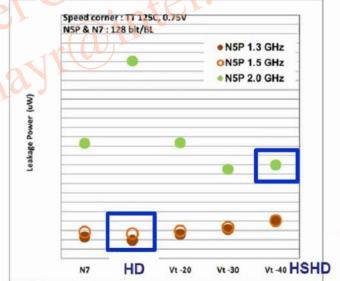
Read Port -120mV (requires keeper ...

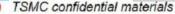
N5P HD/HSHD PPA Comparison

2019-07-17, Session: N5P SRAM

- HSHD for high speed (2G), HD for SOC memories (1G/1.3G/1.5G)
- HD/HSHD co-exists to optimize active leakage power

N5P V0.5P SRAM


N5P SRAM V0.5p (vs N7 v1.1)	HC (vs N7 HC)	HSHC (vs N7 HC)	HD (vs N7 HD)	(vs N7 HD)
Cell Size (um^2)	0.0	257	0.0	214
Shrink	75	5%	78	3%
Delay CV/I @0.75V (TT, 25C)	-3%	-21%	-2%	-21%
Iread	-14%	+1%	-18.5%	-3%
Isb@0.75V TT 25C	1.1X	2.6X	1.0X	1.8X
Isb (FFG 85C)	1.0X	3.3X	0.7X	1.7X
Vmin	675mV	675mV	675mV	675mV
R/W Assist	NA	NA	WA (=N7, 150mV)	WA (=N7, 150mV)


- HSHD write-assist amount: Same as HD.
- All SRAM target is subject to be changed.

Remark:

Value proposition of HSHD cell.

N5P vs. N7 Active Lkg Power @ same speed

TSMC confidential materials

N5P memory compiler SNPS-TSMC matrix

	1						
Memory compiler IP vendor overview							
	TSMC	Synopsys					
memory portfolio	•	++					
Special memory compiler	-	+ (TCAM added to std. offering)					
memory compiler range	limited WW/WD need SoW for larger config → need precise instances early! → customization hardly used!						
Metal usage	finished at M3, M4 over-routing on custom request (WL-doubling)	finished at M3. M4 over-routing on custom request (WL-doubling)					
Margin Methodology	+						
Trimming Capability	+ TSMC will make EMA pins available	Intensive RM/Assist trimming capability					
Read / Write Assist	+ write assist for HD compiler	Read Assist always in, Write Assist optional Protential for lower Voltage operation					
Repair capability	IO repair offered (contradicting to repair rules) unsuitable for large memory content products	IO repair and Row repair available					
Area	+ Best on instance level	Can realize larger instances at higher speed → area gain due to less logical memories					
Implementation Area overhead		(overlay concept densest option available)					
Performance	HD/SP compiler requires additional custivation	ME gating option for chip enable time improvement Better performance allows SVT periphery usage = save Power SVT / LVT / LLVT memory periphery option					
Power Management	diode and diode bypass for Retention feature	+ diode and diode bypass for Retention feature					
Power Features	tstdby, deep sleep, power off	++ Istdby, light retention, deep sleep, power off, POFF retention, POFF SD, input gating for dynamic power reduction					
Level shifter	- LS at the boundary	++ LS in the middle of WL-dec (periphery) → power benefit LS at the boundary virtual level shifter					
Dynamic Power		+					
Leakage (Istby)	+	+					
Leakage (light sleep)	not available	+					
Leakage (Retention)		+					
Leakage (PWROFF)	+ (VDDM collapse)	+ (VDDP collapse)					
Silicon Verification	++ will have intensive verification (accept further customizations)	+ Silicon verification on SNPS testchip; improved coverage after Intel request					
Schedule	+ PDK 0.5; customization needs to be planned	+ PDK 0.5; PVT sign-off corners required					
Implementation Risk	+	+ (N7 multi product usage)					
Memory optimizer/explorer	++ → Covered by IPSG TEG memlister integration!	++ → Covered by IPSG TEG memlister integration!					

Memory IP customization

Gracemont N5 Testchip customization

Intel N5 Instances

IP : ATOM (Optimize : Performance)

IP	Functional Name	Target Tcc (ps)	Target Tcq (ps)	Depth	Width	СМ	вк	Center Decode	Bit Write Enable	Periphery Vt	Vdda Enable	Power Gating	Redund ancy Enable	Bist Enable	Scan Enable	Area (μ²)	N5 Tccrm4 (ps)	N5 Tcqrm4 (ps)	N5 Tac (ps)	N5 Tccrm7 (ps)	N5 Tcqrm7 (ps)
	HD2PRF (1-2-2-3-3): ts05n0g42p11sacri128s																				
Atom	128ex48b	300	135	128	48	1	4	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	902	298	149	44	272	144
Atom	256x68	300	135	256	68	2	4	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	1869	307	164	44	282	160
Atom	512x36	300	135	512	36	4	4	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	1958	307	169	45	282	164
Atom	64ex72*	300	135	64	72	1	2	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	770	271	139	51	246	135
					HS1	PRF	(1-2-	-2) : ts05	n0g41p1	1sasrl256s											
Atom	1024W x 62b cm4	600	200	1024	62	4	2	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	3187	214	214	43	186	186
Atom	1536x72 cm4	600	200	1536	72	4	2	TRUE	FALSE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	4743	262	224	50	234	195
Atom	2048x72 cm4	600	220	2048	72	4	2	TRUE	FALSE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	5884	306	252	58	278	220
Atom	1024W x 56b cm4	600	270	1024	56	4	2	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	2938	212	212	43	184	183
Atom	1024W x 40b cm4	600	270	1024	40	4	2	TRUE	TRUE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	2064	212	207	43	184	179
					HD	SP (1	-2-2) : ts05n0	g41p11s	sadcl02ms											. 1
Atom	4096x68 cm4	600	300	4096	68	4	4	TRUE	FALSE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	10109	482	365	107	453	326
					ROM	۸ (Via	MD) : ts05n()g41p10a	asdvd01ms					\mathcal{I}						
Atom	rom 4608ex12b	600	440	4608	12	16	2			ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	787	427	406	68	395	382
Atom	rom 1024ex16b	600	340	1024	16	8	1	FALSE	FALSE	ULTRALOW	FALSE	FALSE	FALSE	FALSE	FALSE	324	365	340	49	332	323

Meets & beats the required Freq target @ RM7 Timing Mode at TT/0.95V/85C

RM4 Timing Mode at TT/0.95V/85C

*All the data with 1R1W memory for this instance instead of 2R1W memory

No further push on Tcg values

N5 PVTs

Timelines and deliveries

Intel N5 Instances

ATOM / MIG / OTP (HD 2PRF using 12233, HDSP SRAM, ROM, HS1PRF RF)

Si No	. Milestone	Views	Required Schedule	Synopsys Commit (17th June 2019)	Comments
1	FE views	Preliminary FE view - (LEF - Prelim ; Timing - Prelim meeting the Freq target, Hold and Setup are also prelim) PVT - Priority 1; Views from Table 1.1	ASAP	20th June 2019 (Atom) 26 th June 2019 (MIG/OTP)	Delivered
1.1	Preliminary FF views	Preliminary FE view - (LEF - Prelim ; Timing - Prelim meeting the Freq target, Hold and Setup are also prelim) PVT - Priority 1 (2 PVTs); Views from Table 1.1	ASAP	10th July 2019	Re-deliver the Atom package for new instances and targets
2	Not to Grow	Not to Grow - (LEF - Not to Grow X/Y; Signal pin order final; Signal / power pin position could change; Timing - Not to grow timing) PVT - Priority 1; Views from Table 1.1	Jul-19	31st July 2019	
2.1	Back End	Backend Views (LEF - Final; power pin position frozen up to 80%; Timing – Not to grow; GDSII – LVS, DRC Unclean) PVT - Priority 1 & 2; Views from Table 1.2	31st Aug 2019	31st Aug 2019	New Milestone
3	Back End	Backend Views (LEF - Final; Timing - Final; GDSII - LVS Clean , DRC Unclean) PVT - Priority 1 & 2; Views from Table 1.3	7th Oct 2019	7th Oct 2019	
4		Final GDSII PVT - Priority 1 & 2; Views from Table 1.3	11th Nov 2019 31 st Oct. 2019	11th Nov 2019 31 st Oct. 2019	This GDSII will be Plug and verify for Intel

Views Table 1.1

Views	Details	Views
pief	LEF	atpg_t
silpvt	Combined Datasheet for all PVT corners	stid or
allpythtml	Datasheet for HTML	std or
dssum	Summary	shd_ce
veniog	Verling Behavioral/RTL Model	std : ce
syn	Synopsys Model	fast fu
fastscan	Fastscan Model	masks
tof	Fastscan Initialization File	pawer
tetramax	Tetramax Model	apt
tol	Tetramax Initialization File	ct
Mib	Tessent MemoryBIST Model	upf
vhd_rtl	VHDL RTL Model	ikos
stim	Verling Behavioural Model and Verling Netlist Testbench	core
	Markon Saltonian and Market and Wast Baltonian and Market	

Views

	Verliog Netlist for ATPG
	Verling cell library for behavioral model
,	Fastscan cell library for ATPG
	Verling cell library for Tetramax
	Liberty Model for Standard cells
log	Fast functional Verilog Model
	Memory and SMS Information Standard
	Power Verling Model
	Common Power Format Model
	Core Test Language Model
	IP UPF Model
	Synthesizable RTL Model for ikos
	Core used by Synthesizable RTL Model for itos

INFRASTRUCTURE & PLATFORM SOLUTIONS GROUP (IPSG) | INTEL CONFIDENTIAL

Memory

Memory Technology

- Memory bitcell offering:
- Vmin yield trend
- EOL commit and screening recommendation
- HD/HC Vmin and Vsdr through temp
- HD/HC Vmin and Vsdr through process corner

2 new cells offered HSHC/HSHD; special cells, CRAM, TCAM ... on customer request native Vnom: HD86%/72%; HC 87%/77% slightly ahead of plan!

0.675V EOL, 95% 256Mbit, 75mV aging GB, 0.6V T0 screen 95% Vmin 530mV/500mV; Vsdr 380mV/370mV no flyers!

	5 256M in @95%	spec	SF	TT	FS
нс	Vmin (mV)	675	640	538	575
HD	Vmin (mV)	675	557	554	612

Operation voltage and operation voltage range (Power supply voltage)

Overdrive capability and absolute Vmax floor

identical to N7; 0.96V Vmax ceiling incl. ripple! Higher Vmax possibible with reduced product profile (TSMC 10y always on 125C)

Memory QnR

- N5 SRAM redundancy and IFR/ECC rules
- N5 DVS memory condition
- N5 memory reliability and EB
- SRAM fail pareto (HD/HC)
- Memory test algorithms

N5 memory product qualification (technology capability) 256Mbit as major vehicle, for both HD/HC (512Mbit total)

follow TSMC guideline and increase ECC free density by product require DVS at 1.6V for logic and 1.4V for SRAM, 25C ~1sec?

HD/HSHD requires 128bit strapping

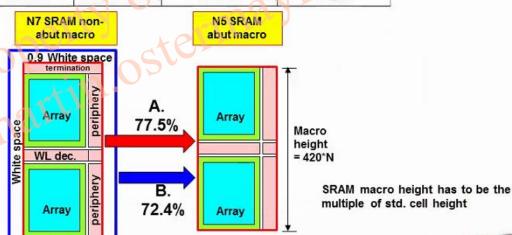
HC/HD passed 3lots 1000h (Samples have been screened prior to HTOL by applying DVS (1.40 V, 25 °C, 1 s), and post-DVS Vmin-limit of 0.600 V at 25 °C. HTOL read-outs have been done at 85 °C and after 1000 hrs of stress (1.19 V = 1.4 x 0.85 V, Tj = 125 °C).

VTB is still there and HTB became 3rd place in the pareto plot

identical to N7 → follow Intel TEG bottom up approach!!!

N5P Vmin yield and comparison to N5

N5P SRAM General Offering


	N5P	SRA	AM G	ene	ral O	fferi	ng	Security-C	ors	t
N5 SRAM	HD	HSHD	нс	нѕнс	8T2P (RP=2N)	8T2P (RP=3N)	DP	10T	+01	
Size (um2)	0.0214	0.0214	0.0257	0.0257	0.0400	0.0428	0.0571	0.0571	VIC	
Vdd (V)	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75		
Vmin (V)	0.675	0.675	0.675	0.675	0.675	0.675	0.675	0.675		
Design Assist	Write Assist (=N7)	Write Assist (=N7)	NA	NA	SNAC	NA	NA	NA		

N5 HC SRAM macro scaling

Security C –

- HC SRAM bit cell scaling 75.2%
- N5 macro area scaling vs. N7 77.5% (LEF vs. LEF) and 72.4% (if count in N7 white space)
- White space reduction only works for H210 standard cell

НС	1PRF (ref.)	w/o white space (LEF vs. LEF, N5 abut macro) (A)	
Macro	256x144M2	77.5%	72.4%

White space