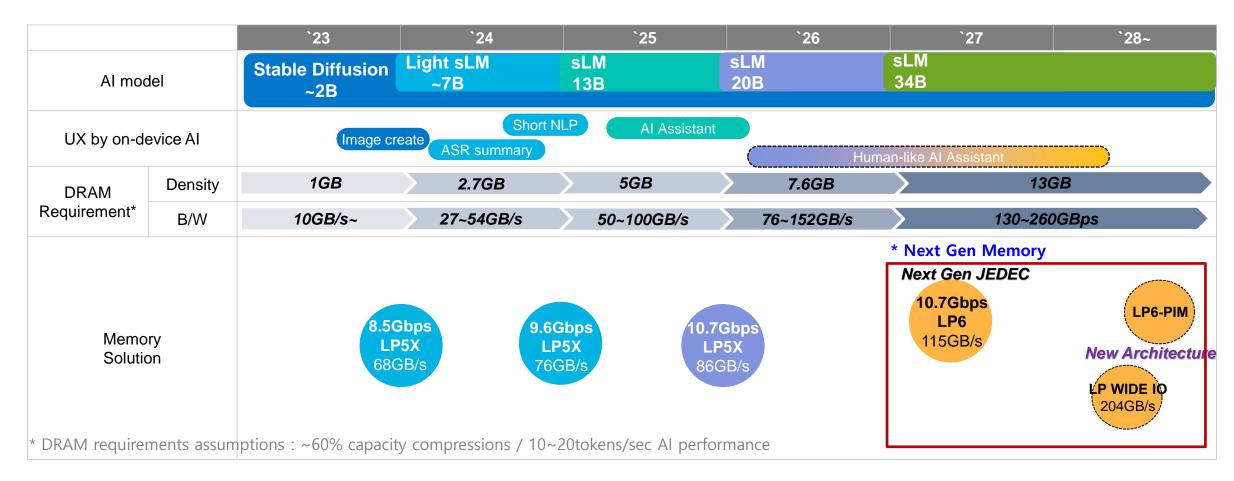
LPW(LPDDR Wide IO) Update

DSA DRAM PP/BE

Executive Summary

1. LPW Development Direction & Eco build

- 1) Value Proposition: Accelerating On-Device AI by providing an utmost Power-Efficient memory
- 2) Development target: '27.1Q(ES, Tentative) based on development decision in Dec'24 → '28.1H MP
 - □ LPW Die Target Spec: 16Gb, 2sub ch x32, 3.2Gbps per pin speed, 1.9pJ/b power efficiency
- 3) No exclusivity, Samsung is preparing JEDEC showing in Dec


2. Feedback on Intel TMC approach

- 1) Device Spec
 - 12.8Gbps speed up:
 LVSTL like IO interface w/ termination can be considered but not to meet LPW power target (1.9pJ/bit)
 - □ RAS feature: Technically, 'Accessible ODECC' can be considered but there is no request from Mobile users / PPR support
 - □ One side IO's: Current LPW die architecture has already decided to move IO pads to die edge same as existing LPx
- 2) PKG(TMC)
 - Assembly cost expected to be increased (heterogeneous attachment of LPW die + TSV die)
 - □ SS is also reviewing alternative solution(VIMS) for 16H stack

*Vertically Interconnect Multi-Stack

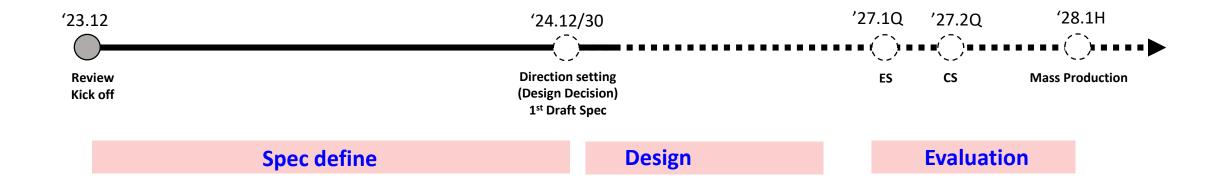
Mobile Market Driven by On-device Generative Al

- 1. Mobile: Simpler queries & less accuracy \rightarrow ASR for Voice assistant, light-weight photo editing for social media
 - 1) Small Language Model for On-device AI: Compromised model for target UX
- 2. LP Mem. Solution: LP5X (D1b 9.6Gbps \rightarrow 10.8Gbps) \rightarrow Next Gen and Pathfinding (LP6 & LP Wide IO, LP-PIM)

Value Proposition: LP5x vs LP6 vs LPW

1. LPW Key Value: Accelerating On-Device AI by providing an utmost power-efficient memory subsystem

I/F	LPI	LP Wide-IO	
	LP5X	LP6	LP Wide-IO
Arch.	SAMSUNG LPDDR5X	SAMSUNG LPDDR6	16Gb 16Gb 16Gb
Key Feature	 76.8GB/s (system B/W, 9.6Gbps) Power efficiency (3.18pJ/b) 	 1. 115GB/s (System B/W, 10.7Gbps+) 2. Power efficiency (2.53pJ/b) 	 204.8GB/s (System B/W) Power efficiency (1.87pJ/b)
Value	Industry Spread (spec, schedule)	Industry Spread (spec, schedule)	'Power / Performance'

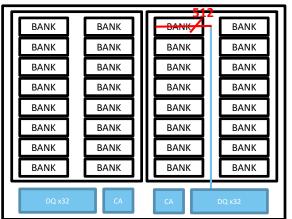

LPW Development Considerations

1. Design Target

- 1) 16GB Package (fine -pitch, 0.25mm) with 1bnm 16Gb
 - □ LPW Die Target Spec: 16Gb, 2sub ch x32, 3.2Gbps per pin speed, 1.9pJ/b power efficiency

2. Milestone

1) Target ES schedule is tentatively '27.1Q based on development decision in Dec'24

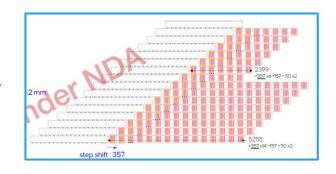

Technical review Update – Bandwidth/Power

1. LPW is a product optimized for power efficiency, improved approximately ~30% compared to LP6

1) To maximize the power efficiency: lower VDD level, No termination, Chip size penalty.

2. Samsung is checking power efficiency based on intel's assumption

I/F	LP5X@1l	onm 16Gb	16Gb LP6@1bnm 16Gb		LPW@1bnm 16Gb	LPW-TMC@1bnm 16Gb	Remark
PKG Ch.	40	4ch.		ch.	8ch.	16ch.	
PKG type(mm2) DSC (7x12.4)	POP(14x12.4)	DSC (7x14)	POP (14x14)	FBGA	TMC	Ref. LPDDR5x PKG type
Density	8/16GB	8/16/32GB	8/16GB	8/16/32GB	16GB	32GB	
10	Х	X64		96	X512	X1024	
Bandwidth	76.8	76.8GB/s		GB/s	204.8GB/s	3276.8GB/s	
Power Efficiency	3.2pJ/b		2.5pJ/b		1.9pJ/b	Under review (Intel's expectation: 2.3pJ/b)	
Speed	9.60	9.6Gbps		Gbps	3.2Gbps	12.8Gbps	
Vol.	1.0	1.05V VDD		/DD2C=0.875V	VDD2D=1.0V VDD2C=0.875V		
ODT	Req	Required Required		Not required	Required		

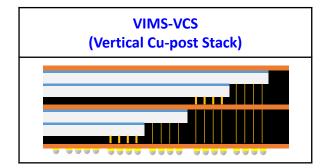

- Core data cycle limitation, Bank size might be increased by 4 times.
- Chip size penalty will be updated.

LP5 9.6Gbps/LLW 3.2Gbps	No. of IO	IO Speed	No. of Core Data bus (Pre fetch)	Core Cycle Speed
LP5	16DQ	9.6Gbps	256	600Mbps
LPW	64DQ(32DQ/Sub CH)	3.2Gbps	1024/die(512/Sub CH)	400Mbps
Intel	64DQ(32DQ/Sub CH)	12.8Gbps	1024/die(512/Sub CH)	1.2Gbps

Technical review Update - PKG

1. Feasibility needs to be reviewed for stacking two different dies

- 1) Doubled die-attach assembly process(lead to be cost adder)
- 2) Alignment of heterogenous(DRAM die + TSV die) chips on the same stacking layer
- 3) Thickness tolerance controllability



2. Samsung initiated feasibility analyses for 16H stack with VIMS technology

DRAM + TSV die stack → DRAM die with VCS interconnection(current tech. target : Max. 4H)

Vertical Cu-post Stack

Relatively hard to achieve low-cost(requires new equipment investment)

3. Additional questions

- 1) Detailed information about cost projection(real product based or simulation)
- Any preferred/constrained PKG-size from Intel
- 3) Staking method of DRAM dies(left-side): MUF with dummy ubumps / standard die-stack with DAF

Thank you

LPW(LP Wide IO) Package Solution

1. Reviewing technical feasibility on 2-cases of solution for LPW Package candidates

1) Fine-Pitch PKG w/ existing infra → VWB(Vertical Wire Bonding) + Wafer level RDL w/New equipment

Case study		Y	(Phase1) Fine-pitch PKG	(Phase2) Vertical Wire Bonding	
New Wide-IO	Concept		16Gb 16Gb 16Gb	DA 32Gb Encapsulation DA 32Gb DA 32Gb DA 32Gb DA 32Gb DA 32Gb DA 32Gb	
	Chip die		*New Wide-IO architecture	←	
Tech.		Stacking	D-QDP structure - x64 per die @dual-row wire bonding	New solution -vwB@4H stacking	
feasibility	PKG	Pad Pitch	80μm -Staggered	60+@μm	
		Size	16.0mm x 7.0mm @0.25mm ball pitch	13.6mm x 7.0mm @uBump 60um↓	
Risk point			Reviewing die thickness and wire gap options to prevent wire bonding interruption	VWB feasibility Testability @DA Pad is consideration	