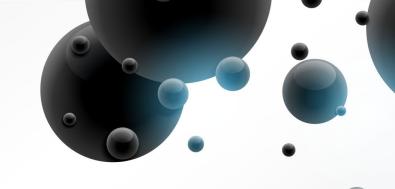


F200 MEMORY PERI

ALESSIO SPESSOT



LOGIC DEVICES F200

NOW IN COURSE:

MEMORY PERI ROADMAP FOR DRAM AND NAND

ALESSIO SPESSOT

THIS PRESENTATION IS OPEN TO:

CORE PARTNERS, APPLE, SOCIONEXT

AMAT, ASM, BASF, SCREEN, KLA-TENCOR, KULEUVEN, LAM, SYNOPSYS, RIBER, COVENTOR, NOVA, THERMOFISHER, PARK SYSTEMS, SOITEC, KURITA, KOKUSAI, SILTRONIC, AIR LIQUIDE, EBARA, GLOBALTCADSOL, VERSUMMATERIALS, HPSP, ASML, MERCK, HITACHI, TEL, SHINETSU

TECHNOLOGY DRIVERS FOR MEMORY PERI PLATFORM

DRAM

Strategic Goal: power reduction (mobile application), high performance (graphic market/Al)

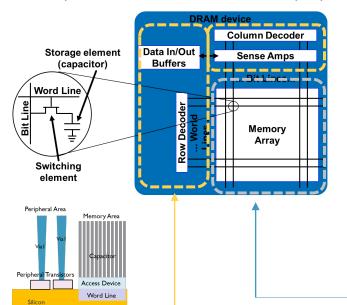
Development of HKMG FF platform (thin oxide, thick oxide) / reliability concern for planar and FF

SCM:

Strategic Goal: power and performance as close as possible as DRAM (power reduction, high performance), enablement of **selector** bias

NAND:

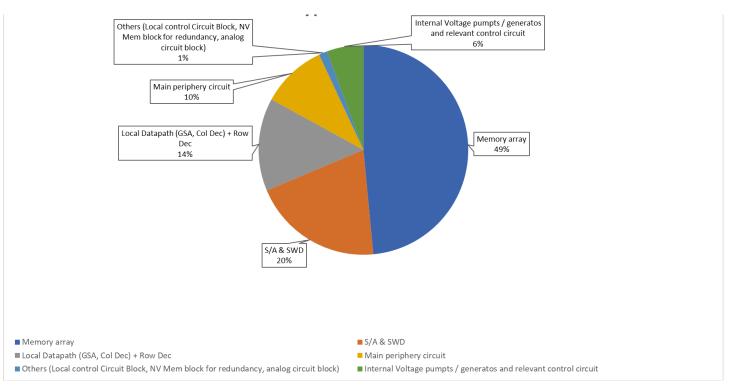
Strategic Goal:


- I) power/performance benefit improvement on I/O;
- 2) area reduction

DRAM

TRANSISTORS USED IN DRAM MEMORY CHIP

- In DRAM technologies, transistors are used as access devices and in the peripheral circuitry.
- Peripheral transistors serve several purposes: address decoders, sense amplifiers, output buffers, control circuitry


	Cell Transistor	Periphery Transistor							
Type of transistor	Access Device	Regular Logic Transistor	Sense/Amplifier	Row Decoder (SWD)					
Applied Voltage	VPP (~3.0V)	VDD (1.5V)	Vcore (1.0V~1.3V)	VPP (~3.0V)					
Gate Oxide thickness	THICK (>=6nm)	thin (<2.5nm)	thin (<2.5nm)	THICK (>=5nm)					
Gate Length	Determined by WL pitch & vertical depth	Larger than Cell minimum dimensions; determined by Ion/Ioff specs and SCE (<50nm)	Maximize Lg within BL pitch (e.g.: ~100nm)	Maximize Lg within WL pitch (e.g.: ~120nm)					
Key features/Attenti on point	Junction Leakage Short Channel Margin	Speed Short Channel control	Local Variation; low Vth	Reliability					
features/Attenti	Short Channel	•	Local Variation; low V						

Reference value for DDR3, DRAM 20 nm node; Adapted from \$. Y. Cha, IEDM 2011 short course;

- Additional customized requirements are needed, diversifying them from standard logic flow:
 - **Low power/low leakages** (low I_{OFF} and J_G mandatory)
 - Compatibility of fabrication process (gate stacks, silicide, junction scheme) with the **prolonged thermal treatment** needed in a DRAM process (typically several hours above 600°C).
 - **Low(err) cost** (than advanced high-performance devices)

AREA BREAKDOWN EXAMPLE (GDDR6)

NON MEMORY AREA > MEMORY AREA

AUTOMOTIVE DRIVES HIGH PERFORMANCE DRAM MARKET

ADVANCED DRIVER-ASSISTANCE SYSTEMS (ADAS), IN-VEHICLE INFOTAINMENT (IVI)

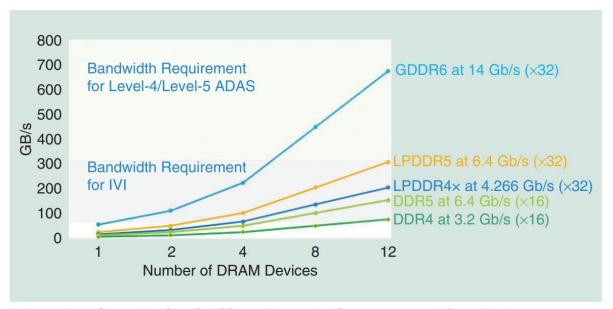
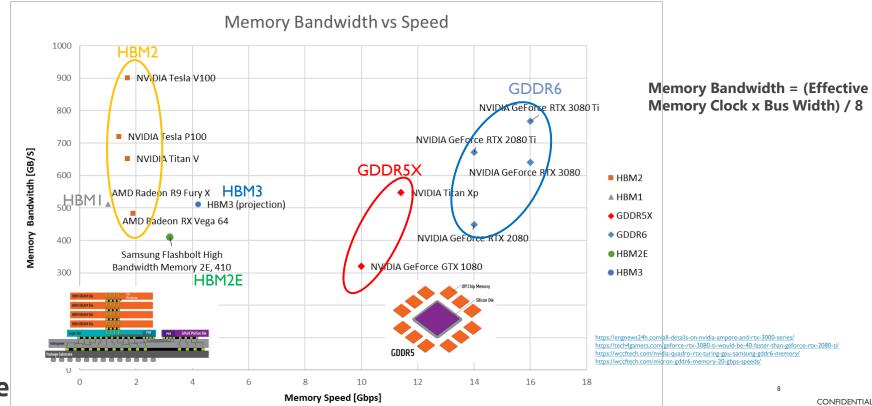


FIGURE 18: The system bandwidth requirements of autonomous and semiautonomous ADASs and IVI.


memory bandwidth requirements:

• in-vehicle infotainment (IVI) can demand 50- to 300-GB/s

timec advanced driver-assistance systems (ADASs): 300-GB/s to I-TB/s

MEMORY BANDWIDTH VS SPEED

HIGH-END GAMING, VIRTUAL REALITY, CRYPTOCURRENCY MINING AND ARTIFICIAL INTELLIGENCE (AI) REQUIRES HIGH PERFORMANCE MEMORY

PERFORMANCE AND POWER

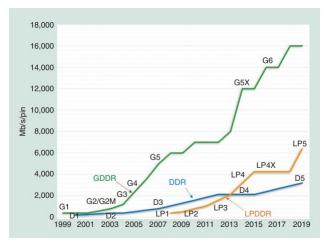


FIGURE 2: The DRAM per-pin bandwidth history for the DDR family.

High performance path: GDDR5 reaches 8Gbps, increasing energy/bit vs LPDDR4

Nagashima, JEDEC Aug 2018

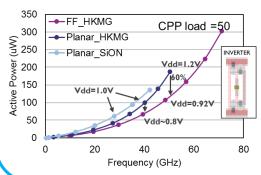
- GDDR5 can reach 8000MBPS, about x2 faster than the LPDDR4
- Energy/bit is higher in GDDR5 than in LPDDR4

https://www.jedec.org/sites/default/files/Osamu_Nag
ashima_Mobile_August_2016.pdf
confidential

MULTIPLE HKMG PLANAR SOLUTION DEVELOPED IN IMEC

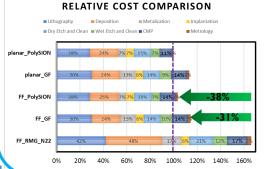
		NMOS									PMOS					
		MIPS					D8	GR	RMG		MIPS			D&GR	SiGe	RMG
	TiN	TiN + As	La above	La below	TiN\Mg\ TiN	TiN\Mg\ TiN + As I/I	La	TiN\Mg\ TiN	TiN\TiAl \Ta\TiN		TiN	Al2O3 below	Al2O3ab ove	Al2O3 D&GR	SiGe + Si Cap	TiN\TiN
Low VTH thermally stable?	NO	Partial	Yes	Yes	Yes	Yes	Yes	Yes	Yes		NO	Yes	Yes	Yes	Yes	Yes
imec Demo Level																
imec capacitor	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
unichannel device	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NO		Yes	Yes	Yes	Yes	Yes	NO
CMOS device	Yes	Yes	Yes	NO	Yes	Yes	NO	NO	NO		Yes	Yes	Yes	Yes	NO	NO
CMOS device with RO (un optimized)	Yes	Yes	NO	NO	Yes	Yes	NO	NO	NO		Yes	Yes	Yes	Yes	NO	NO
CMOS device with RO (optimized)	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO

10


Illustration purpose only

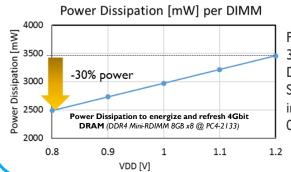
FINFET FOR DRAM/SCM PERIVALUE PROPOSITION

~50% area saving in the analog part Relative Area comparison Relative Area comparison Area FF (HKMG) (um^2) Area FF (HKMG) (um^2) The state of the state of


Sense/Amp benefit FinFET HKMG can enable ~50% area gain due to improved mismatch and taller fin

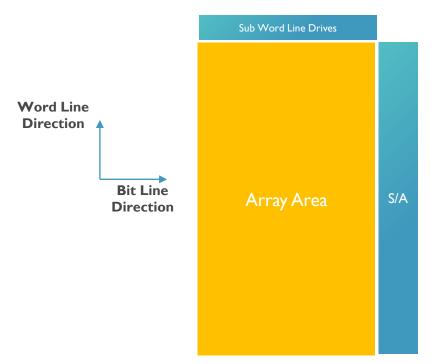
AC Power/Performance improvement (RO level) wrt planar

FinFET HKMG device outperform planar HKMG (60% less power at similar performance of HKMG planar with further VDD reduction down to 0.8V)


Cost effective flow wrt High Performance Logic

llier

Proposed FinFET flow remains more cost effective than logic flow at corresponding dimensions


Power saving at system level wrt planar

FinFET HKMG can enable 30% power saving at DIMM level wrt planar SiON devices by reducing internal VDD down to 0.8V)

CONFIDENTIAL

FINFET: AREA SAVING SENSITIVITY STUDY (S/A PART)

Sub Word Line Drives (thick oxide): 3 MOSFETs (2N, IP)

S/A (thin oxide): ~9 MOSFETs
7N (2 S/A + 3 Equalizer + 2 CSL) + 2P (2 S/A)

CONFIDENTIAL

SCM

16 CONFIDENTIA

PERIPHERY DEVICES REQUIRED BY STORAGE CLASS MEMORY

HIGHER BIAS COMPATIBLE DEVICES REQUIRED

XP transistor needs to deliver power/performance similar to DRAM, including also an option for 7.5-8V bias required to row decoder → different requirement for thicker gate stack needed wrt DRAM

	Cell Transistor	Periphery Transistor							
Type of transistor	Access Device	Regular Logic Transistor	Sense/Amplifier	Row Decoder (SWD)					
Applied Voltage	VPP (~3.0V)	VDD (1.5V)	Vcore (1.0V~1.3V)	VD~7.5/8					
Gate Oxide thickness	THICK (>=6nm)	thin (<2.5nm)	thin (<2.5nm)	>= 15nm					
Gate Length	Determined by WL pitch & vertical depth	Larger than Cell minimum dimensions; determined by lon/loff specs and SCE (<50nm)	Maximize Lg within BL pitch (e.g.: ~100nm)	Maximize Lg within WL pitch (e.g.: ~120nm)					
Key features/Attenti on point	Junction Leakage Short Channel Margin	Speed Short Channel control	Local Variation; low Vth	Reliability					

DRAM:

- Thinner gate stack option: "Tall" Finfet HKMG Gate First, with EOT target ~ I.4 nm and good mismatch
- Thicker Gate stack option: increased EOT ~ 5nm and longer channel needed (Lg>~100nm) for SWD → HKMG FF with thicker EOT and optimized junctions is considered

SCM:

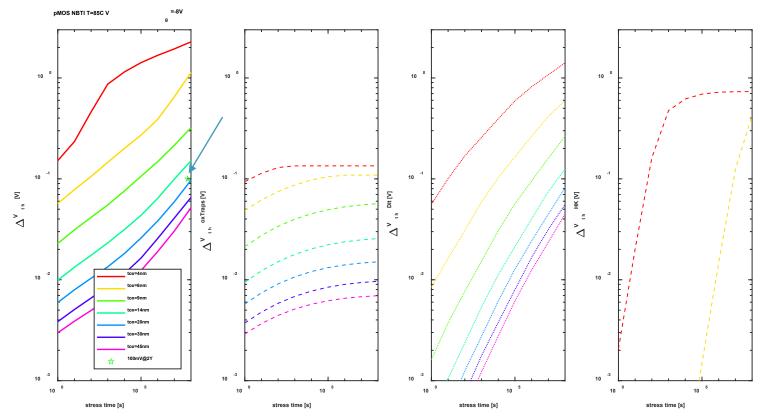
- Thinner gate stack option: "Tall" Finfet HKMG Gate First, with EOT target ~ I.4 nm and good mismatch (as DRAM)
- Thicker Gate stack option: increased EOT ~ 5nm and longer channel needed (Lg>~100nm) for SWD → HKMG FF with thicker EOT and optimized junctions is considered

CONFIDEN

COMPHY SETUP

- $N_D = 1e15/cm^3$
- WF=4.34eV (n-type)

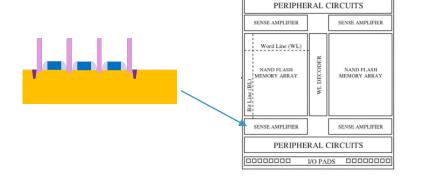
$$V_T = V_{FB} + 2 \psi_B + \frac{\sqrt{2 \varepsilon_s q N_A (2 \psi_B)}}{C_{ox}}$$

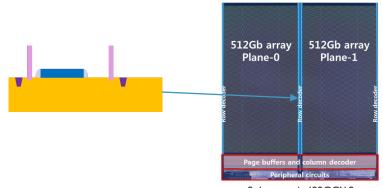

- note: doping minimized to suppress V_{th0} depends on t_{ox} due to the depletion charge
- For this setup: $V_{th0} \sim -0.649 \, V 0.004 * t_{ox}[nm]$
- 2nm HfO_2 (k=24) on top of SiO_2 of varying thickness

Defect models (as calibrated on Memory Peri HKMG stack (EOT~5nm, HKMG) [G. Rzepa, MR 18])

- Hole trap defect band only across first 0.6nm of SiO₂ (defective transition layer)
- Hole trap in HfO_2
- Double-Well model for interface state generation
 - Disclaimer: model calibrated on stack with t_{ox} =5nm \rightarrow D_{it} becomes the dominating for even thicker tox \rightarrow accuracy might be limited

 t_{ox} slightly thicker than 14nm can meet NBTI reliability target

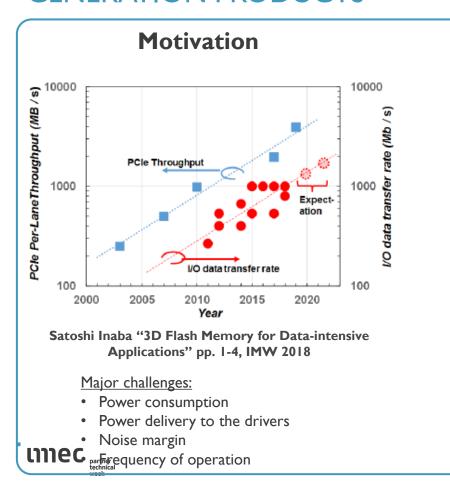

hole trap in HfO_2 has minor/negligible contribute for a thick t_{ox}


NAND

NAND PERIPHERAL DEVICES & ASSUMPTIONS USED

EXAMPLE OF TRANSISTOR USED

- Logic MV (e.g.: Page Buffer)
 - Lgate <200 nm;</p>
 - > Gate stack oxide thickness ~ 5 nm;
 - CPP<500 nm;</p>
- Logic HV (e.g.:Word Line Decoder)
 - Lgate ~1000 nm;
 - Oxide thickness >~ 40-50nn


S. Lee et al., ISSCC'18

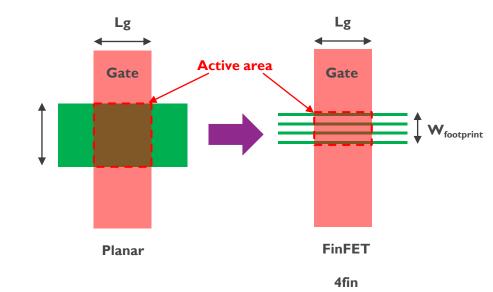
Data extracted from state-of-the-art 3D NAND technology (# layers > 90) reverse engineering report

CONFIDENTIAL

SPEED OF NAND I/O EXPECTED TO INCREASE IN THE NEXT GENERATION PRODUCTS

Objective:

- Define the I/O topology and optimal device specs (Gate length, Channel width, Gate oxide thickness, Supply voltage) to meet the high speed requirement (~2GBPS data rate)
- Define the guidelines for <u>IC interface</u> (pad, bondwire, pin, Transmission line RLC)


Methodology:

- DoE of device based on compact model
- Determination done analyzing the eyediagram opening
- Benchmark of different sensing schemes

KEY QUESTION

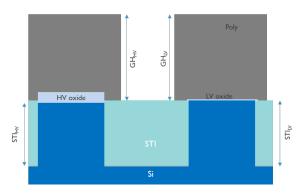
Is there a way to reduce the area impact of HV devices (EOT=40nm) in a NAND memory chip, without compromising performance (including the MV PPA)?

- Poly-SiO₂ tall FinFET cointegrating Low and High Voltage is under exploration
 - Pros: significant area reduction (~50% on HV
 - Cons: potential detrimental impact by larger parasitic capacitance of FinFET (which can be compensated by better electrostatic channel control)

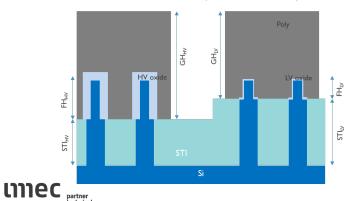
NAND: OPTION I (FF)

CONFIDENTIAL

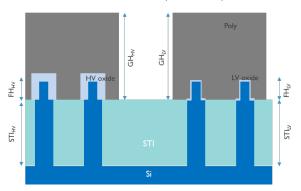
25

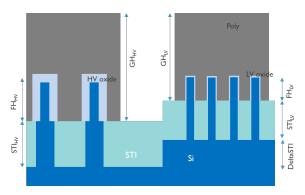

NAND: OPTION 2 (PLANAR HKMG)

26



CONSIDERED INTEGRATION OPTIONS


PLANAR HV + PLANAR LV

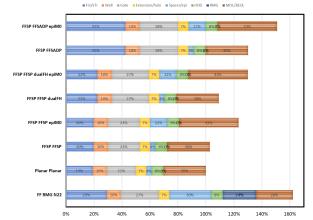

FF SP HV + FF SP LV (DIFFERENT FH)

FF SP HV + FF SP LV (SAME FH)

FF SP HV + FF SAPD LV

27

CONFIDENTIAL


COO OF NAND PERI FF INTEGRATION

Module Cost								
	FF RMG N22	Planar Planar	FFSP FFSP	FFSP FFSP epiM0	FFSP FFSP dualFH	FFSP FFSP dualFH epiM0	FFSP FFSADP	FFSP FFSADP epiM0
Fin/STI	196.54	128.73	133.25	133.25	151.64	151.64	286.15	286.15
Well	67.04	68.8	68.8	68.8	68.8	68.8	68.8	68.8
Gate	185.37	140.33	154.06	154.06	180.01	180.01	186.93	186.93
Extension/halo	49.66	49.66	49.66	49.66	49.66	49.66	49.66	49.66
Spacer/epi	201.98	25.54	25.54	83.12	25.54	83.12	25.54	83.12
HDD	57.24	57.24	57.24	57.24	57.24	57.24	57.24	57.24
RMG	159.82	0	0	0	0	0	0	0
MOL/BEOL	178.69	205.65	205.65	288.01	205.65	288.01	205.65	288.01
Total	1096.34	675.95	694.2	834.14	738.54	878.48	879.97	1019.91

Module Relative								
	FF RMG N22	Planar Planar	FFSP FFSP	FFSP FFSP epiM0	FFSP FFSP dualFH	FFSP FFSP dualFH epiM0	FFSP FFSADP	FFSP FFSADP epiM0
Fin/STI	29%	19%	20%	20%	22%	22%	42%	42%
Well	10%	10%	10%	10%	10%	10%	10%	10%
Gate	27%	21%	23%	23%	27%	27%	28%	28%
Extension/halo	7%	7%	7%	7%	7%	7%	7%	7%
Spacer/epi	30%	4%	4%	12%	4%	12%	4%	12%
HDD	8%	8%	8%	8%	8%	8%	8%	8%
RMG	24%	0%	0%	0%	0%	0%	0%	0%
MOL/BEOL	26%	30%	30%	43%	30%	43%	30%	43%
Tetal D C	162%	100%	103%	123%	109%	130%	130%	151%

week

RELATIVE COST COMPARISON ### Eithography | Deposition | Metalization | Implantation | Implantat

CONFIDENTIAL

FF SP HV + FF SAPD LV

COO OF NAND (INCLUDING AREA SCALING)

	Cost	Area Saving (thick)	Area Saving (thin oxide)	Power- Performa nce (thin)
Planar Planar	1	3	3	2
FFSP FFSP	1	2	2	3
FFSP FFSP dualFH	2	1	2	1.5
FFSP FFSADP	3	1	1	1

29

l best 3 worst

CONFIDENTIAL

PERITRANSISTOR: IMEC DEVELOPMENT SYNOPTIC VIEW

Memory	Oxide	FF HKMG	FF HKMG	FF HKMG	Planar	Planar	FF SiO2	FF SiO2
type	type	Gate First	Gate First	Gate First	HKMG	HKMG	(MV)	(HV)
			(thick IL)	(thick IL)	Gate First	Gate First		
						(thicker		
						IL)		
DRAM	LV	Υ						
DIAM	HV		Υ					
SCM	LV	Υ						
SCM	HV			Υ				
NAND	LV				Opt I		Opt 2	
INAIND	HV					Opt I		Opt 2
	HKMG	Υ	Υ	Υ	Υ	Υ	SiO2	SiO2
	FF / planar	FF	FF	FF	PI	PI	FF	FF
	VDD							
	target (V)	1.0	3.0	8.0	3.3	30	3.3	30
	EOT							
	target							
	(nm)	1.4	5	16	5	50	5	50

SCM requires higher VDD option than DRAM, but the technology platform can be the same

in EAND is currently explored as planar HKMG or FF SiO2

CONCLUSIONS

DRAM

- Multiple HKMG planar platform solutions have been developed for thin oxide
- Current imec HW focus is on FF development for next gen memory and integration of thick oxide (EOT ~4-6 nm), addressing also the reliability concern for planar and FF

SCM

- HKMG is a need to keep up speed close/similar to DRAM:
 - What are the integration challenges due to higher bias needed for the memory cells?
 - Are specific reliability concern due to integration of HKMG on thicker oxide (~15nm)?

NAND

- Higher I/O speed \rightarrow triple oxide thickness: which platform is the best options?
 - HKMG planar (do we deliver the expected specs? Reliability concern in thicker oxide?)

31

• Area saving \rightarrow FF HV platform assessment

CONFIDEN

ACKNOWLEDGMENT

- Eugenio Dentoni Litta
- Jacopo Franco
- Hyungrock Oh
- •
- Naoto Horiguchi


CONFIDENTIAL

32

