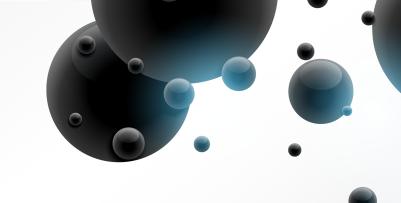


FINFET INTEGRATION IN MEMORY PERIPHERY TRANSISTORS

EUGENIO DENTONI LITTA, ON BEHALF OF THE MEMORY PERIPHERY TEAM



LOGIC DEVICES F1110

NOW IN COURSE:

FINFET INTEGRATION IN MEMORY PERIPHERY TRANSISTORS

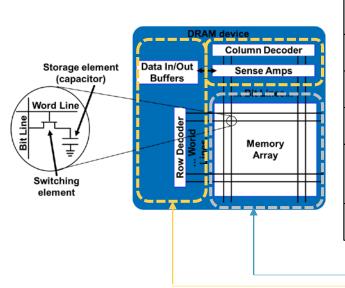
POONGSAN, ASML, HITACHI, TEL

EUGENIO DENTONI LITTA

THIS PRESENTATION IS OPEN TO:

CORE PARTNERS, HUAWEI, APPLE, SOCIONEXT AMAT, ASM, BASF, SCREEN, KLA-TENCOR, KULEUVEN, LAM, SYNOPSYS, ULTRATECH, COVENTOR, NOVA, PARKSYSTEMS, SOITEC, KURITA, SILTRONIC, VOLTAIX, AIRLIQUIDE, CENTRALGLASS, BEBARA, GLOBALTCADSOL, VERSUMMATERIALS,

OUTLINE


- Introduction
- FinFET integration in memory periphery
 - Process/device pathfinder lot: module development status
 - Key challenges & outlook
- Electrical evaluation of FinFET pathfinder
 - Device performance: HKMG vs SiON/poly
 - Threshold voltage tuning
 - Thermal stability
- Conclusions and outlook

OUTLINE

- Introduction
- FinFET integration in memory periphery
 - Process/device pathfinder lot: module development status
 - Key challenges & outlook
- Electrical evaluation of FinFET pathfinder
 - Device performance: HKMG vs SiON/poly
 - Threshold voltage tuning
 - Thermal stability
- Conclusions and outlook

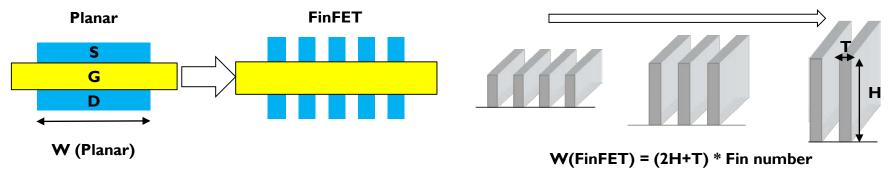
TRANSISTORS USED IN DRAM MEMORY CHIP

- Peripheral transistors serve several purposes: address decoders, sense amplifiers, output buffers, control circuitry
- This presentation: FinFET integration in low voltage transistors
- Key integration challenges: gate-first FF flow, high thermal budget

	Cell Transistor	Periphery Transistor		
Type of transistor	Access Device	Regular Logic Transistor	Sense/Amplifier	Row Decoder
Applied Voltage	VPP (~3.0V)	VDD (1.5V)	Vcore (1.0V~1.3V)	VPP (~3.0V)
Gate Oxide thickness	THICK (>=6nm)	thin (<2.5nm)	thin (<2.5nm)	THICK (>=5nm)
Gate Length	Minimum Feature size	Larger than Cell (~50nm)	Longer Lg within pitched layout (e.g.: ~100nm)	Longer Lg within pitched layout (e.g.: ~120nm)
Key features/Attentio	Junction Leakage Short Channel	Speed Short Channel	Local Variation (mismatch)	Reliability

Reference value for DDR3, DRAM 20 nm node; Adapted from \$. Y. Cha, IEDM 2011 short course;

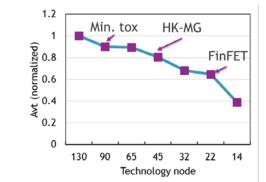
Area breakdown:

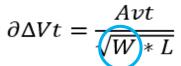

Memory Array ~60%,

Periphery Transistor ~40% (~1/3 Sense Amp; ~2/3 Regular Logic + Decoder)

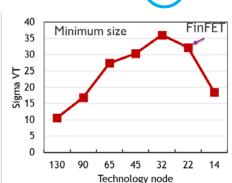
FF MEMORY PERIPHERY EXPECTED VARIABILITY & PERFORMANCE IMPROVEMENT

WIDE EFFECTIVE TRANSISTOR WIDTH IN FINFET W/ HIGH FINS




Wide effective transistor width in FinFET achievable with higher fin

- Larger drive current/foot print
- Small variability


FinFET has intrinsically better variability thanks to low channel dopant concentration.

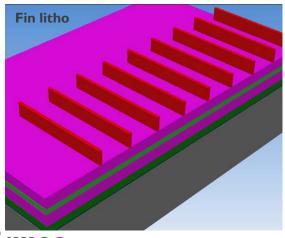
better mismatch with taller FF

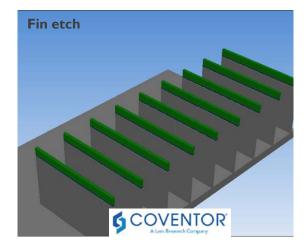
KEY PROCESS ASSUMPTIONS

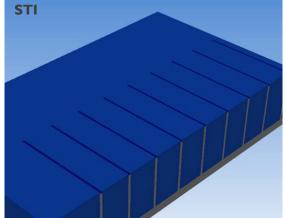
- Fin geometry:
 - 40nm initial fin height target, to be extended to taller fins
 - Single patterning (cost effectiveness, variable fin width)
 - -> Gemini maskset: variable fin W (15-100nm)
- Gate stack:
 - Gate-first SiON/poly (lower process cost)
 - Gate-first HKMG (performance, scalability, process window)
 - Gate-last not considered at this point (higher cost, thermal budget considerations)
- Junctions/contact:
 - Epi not implemented yet (lower process cost), evaluation planned
 - Junction design by ext/halo and HDD implantations
 - Extended silicide contact (Salicide) without M0/LI module (lower process cost)

OUTLINE

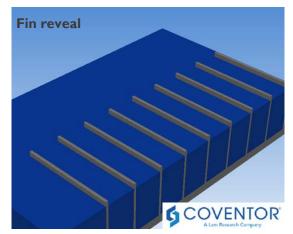

- Introduction
- FinFET integration in memory periphery
 - Process/device pathfinder lot: module development status
 - Key challenges & outlook
- Electrical evaluation of FinFET pathfinder
 - Device performance: HKMG vs SiON/poly
 - Threshold voltage tuning
 - Thermal stability
- Conclusions and outlook

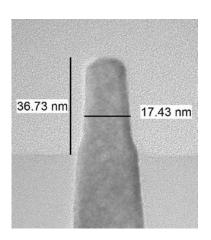

FIN/STI MODULE


- Key layout/process values:
 - Fin width: 15-100 nm
 - Fin pitch: 200-600 nm
- Key device splits:
 - None



None

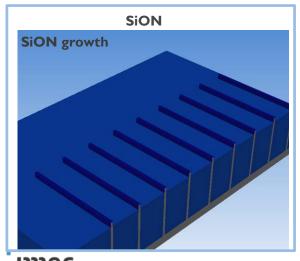


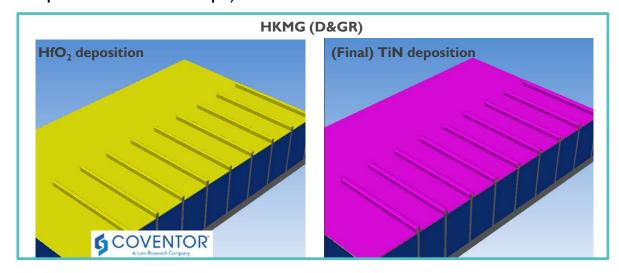


CHANNEL DOPING/FIN REVEAL

- Key layout/process values:
 - Fin height: 40 nm (evaluation to be extended to 80nm)
- Key device splits:
 - Channel implant conditions (based on Everest and Salsa3 baselines)
 - V_T adjust implants

- Major challenges:
 - None expected

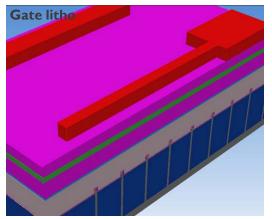


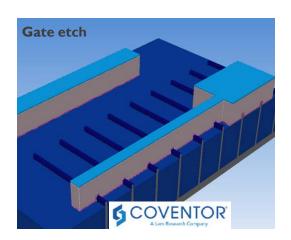


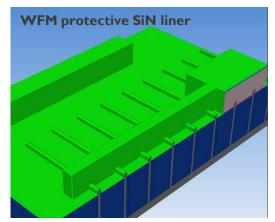
GATE STACK DEPOSITION

- Key layout/process values:
 - Two gate-first options (SiON/poly and D&GR HKMG)
- Key device splits:
 - V_T tuning in SiON/poly (channel and poly implants)
 - V_T tuning in HKMG (channel implants, dielectric caps)

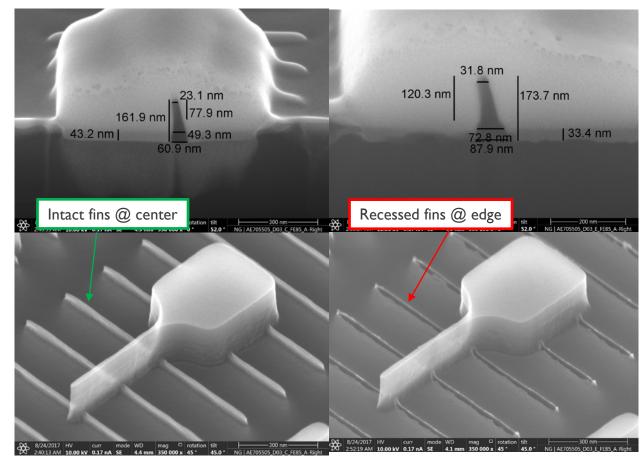
- Major challenges:
 - None expected





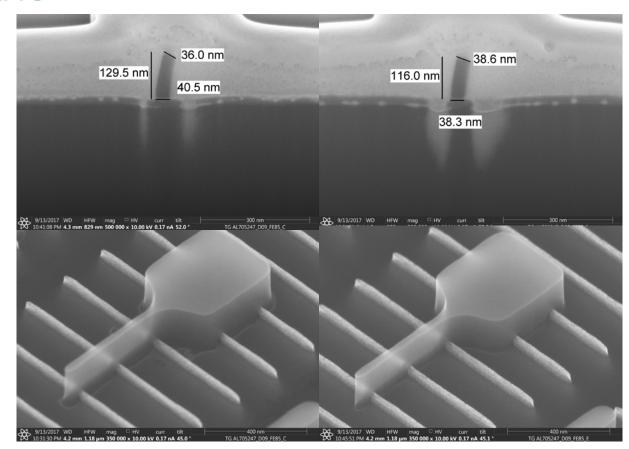

GATE PATTERNING

- Key layout/process values:
 - Gate length (min): 35 nm (30nm trim)
 - Fin pitch (min): 500 nm
 - WFM protective liner: 3nm
- Key device splits:
 - None


- Major challenges:
 - Gate profile / fin attack tradeoff in SiON/poly

GATE PATTERNING: SION/POLY

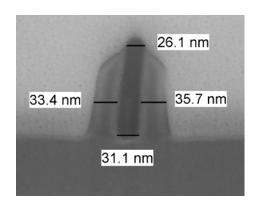
- Fin attack at wafer edge
 - Linked to polySi uniformity and SiON thickness
 - Outlook: improved poly dep uniformity and CMP planarization
- Strongly tapered profile
 - Due to lateral etch of doped poly
 - Unclear if process window exists
 - Outlook: process window exploration

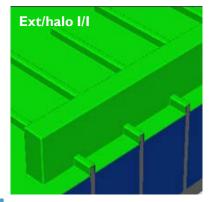


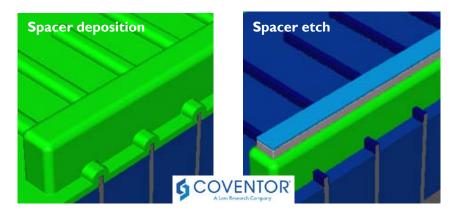
CONFIDEN

GATE PATTERNING: HKMG

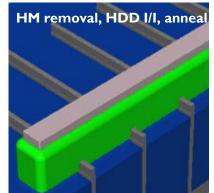
- Gate profile OK
- No fin attack
- Residues observed at north of wafer
 - Linked to poly uniformity
 - Outlook: improved poly dep uniformity and CMP planarization

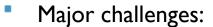


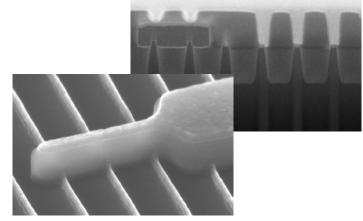


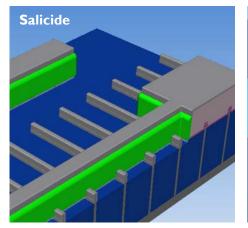

JUNCTION FORMATION

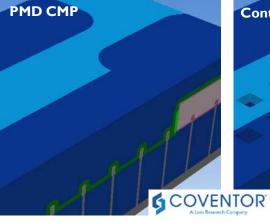
- Key layout/process values:
 - Spacer width: 30nm (to be scaled)
- Key device splits:
 - Ext/halo implants (based on Everest and Salsa3 baselines)
 - HDD implants (based on Everest and Salsa3 baselines)
 - DRAM anneal

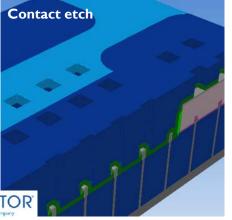

- Major challenges:
 - None expected

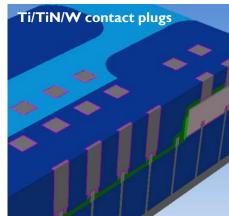

15

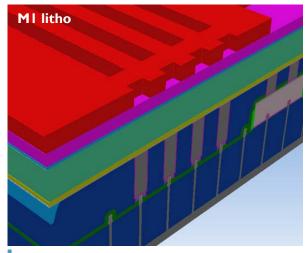


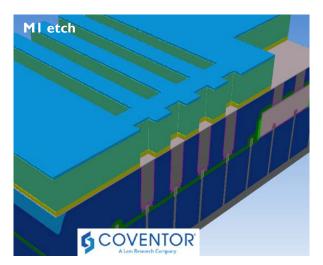

MOL

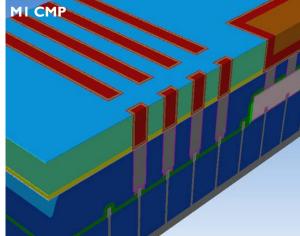

- Key layout/process values:
 - Self-aligned silicide
 - PMD/contact scheme ported from planar baseline
- Key device splits:
 - None




None

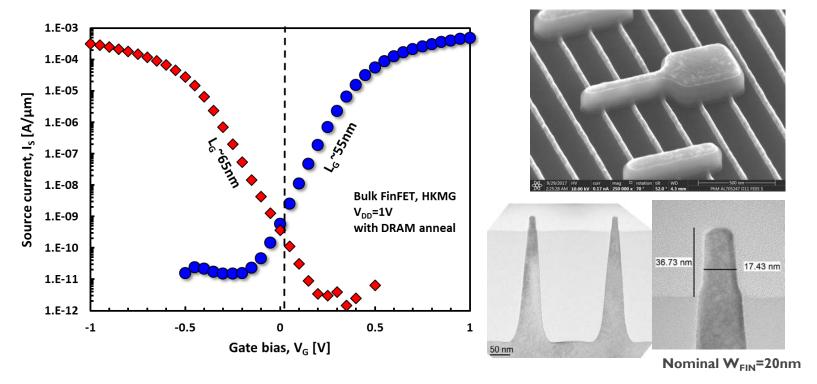





BEOL

- Key layout/process values:
 - Cu damascene as in planar baseline
- Key device splits:
 - None

- Major challenges:
 - None

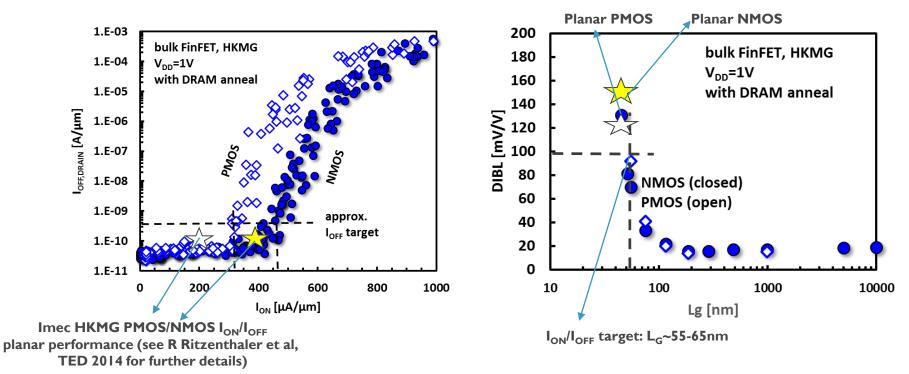

KEY CHALLENGES & PLAN

Module	Status	Development plan
Fin/STI	OK	-
Channel doping/fin reveal	OK for 40nm fins	Fin reveal and implant conditions to be developed for tall fins
Gate stack deposition	Working	SiON thickness tuning, D&GR process optimization for fins
Gate patterning (SiON/poly)	Tapered profile, fin attack	PolySi uniformity improvement, etch window exploration
Gate patterning (HKMG)	OK for 40nm fins	PolySi uniformity improvement, process optimization for tall fins
Junction formation	Working	Spacer and I/I tuning for 40nm and tall fins
MOL	OK	Contact etch tuning
BEOL	OK	-
inec partner.	10	COMPRESE

OUTLINE

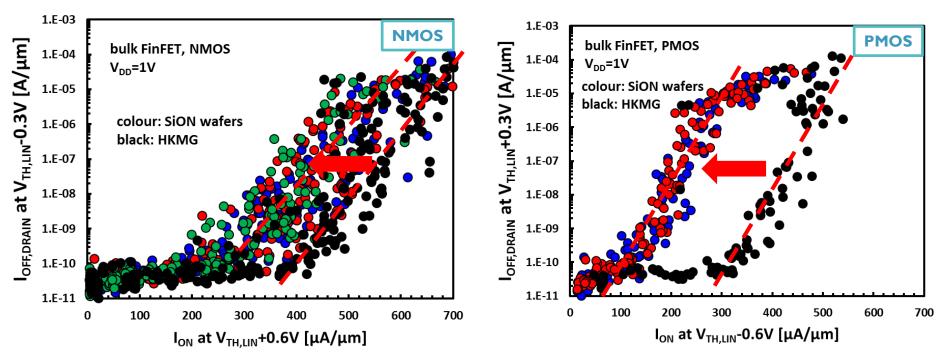
- Introduction
- FinFET integration in memory periphery
 - Process/device pathfinder lot: module development status
 - Key challenges & outlook
- Electrical evaluation of FinFET pathfinder
 - Device performance: HKMG vs SiON/poly
 - Threshold voltage tuning
 - Thermal stability
- Conclusions and outlook

GATE-FIRST HKMG FINFET DEMONSTRATED

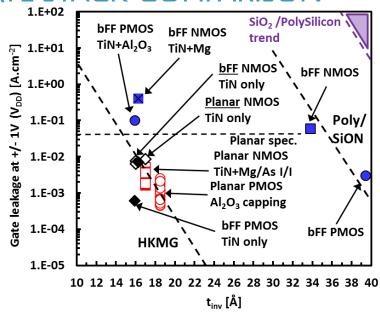

FinFET process/device pathfinder: gate first integration, with good electrostatics down to target L_G

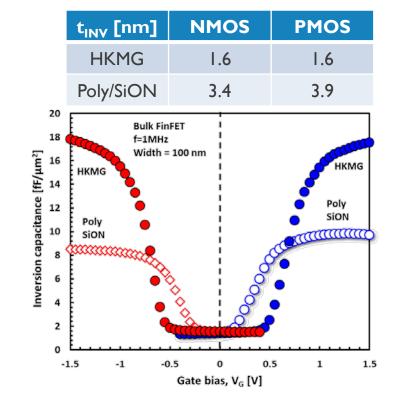
20

CONFIDENTIAL


DEVICE PERFORMANCE: HIGH-K/METAL GATE

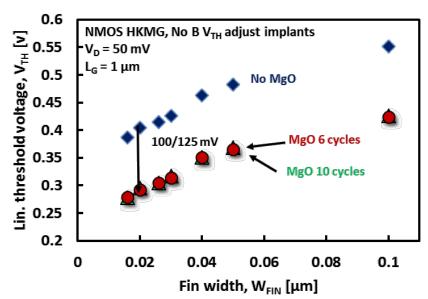
 FinFET HKMG wafers: pathfinder lot at performance level (I_{ON}/I_{OFP} short channel margin) of planar baseline


DEVICE PERFORMANCE: POLY/SION



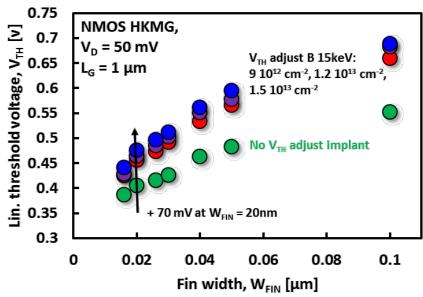
- Functional Poly/SiON FinFETs, but worse performance than HKMG
- SiON T_{inv} thicker than in HKMG wafers (see next slide)

GATE STACK COMPARISON



- HKMG:
 - Consistent values for TiN only HKMG wrt planar baseline
 - Gate leakage degradation with integration of eWF shifters in FinFETs (under investigation)
- Poly/SiON:
 - Higher Tinv than expected (under investigation)
 - Acceptable gate leakage, but higher than expected

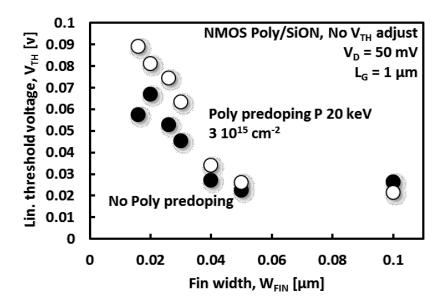
V_{TH} TUNING: HIGH-K/METAL GATE NMOS


- D&GR MgO cap:
 - Shift preserved down to narrow FinFETs
 - >100mV shift obtained at 15-20nm FinW

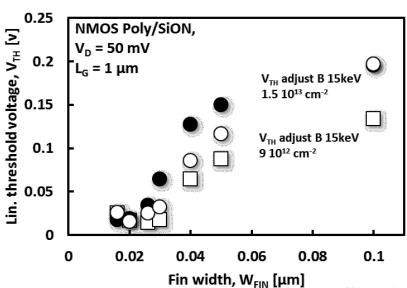
24

No effect of MgO thickness

Channel implant

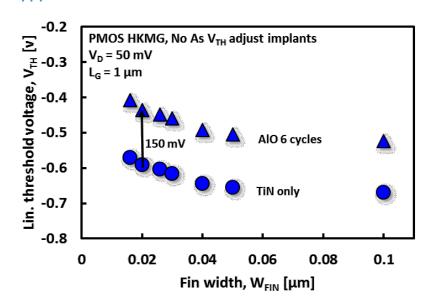

- Reduced efficiency of V_{TH} adjust implants with fin width reduction
- Maximum +70 mV shift obtained for narrow FinFETs with V_{TH} adjust implants

CONFIDENTIA


V_{TH} TUNING: POLY/SION NMOS

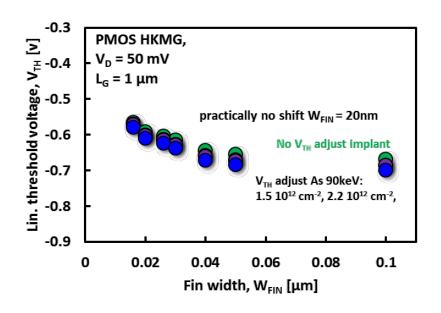
- Poly doping:
 - Limited V_{TH} shift obtained with gate predoping implant

Channel implant:


- Reduced efficiency of V_{TH} adjust implants with fin width reduction
- Limited V_{TH} shift obtained for narrow FinFETs with V_{TH} adjust implants

25

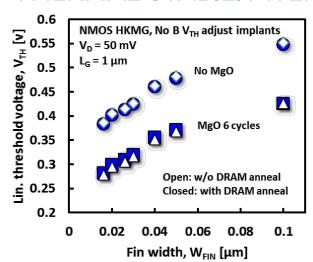
V_{TH} TUNING: HIGH-K/METAL GATE PMOS

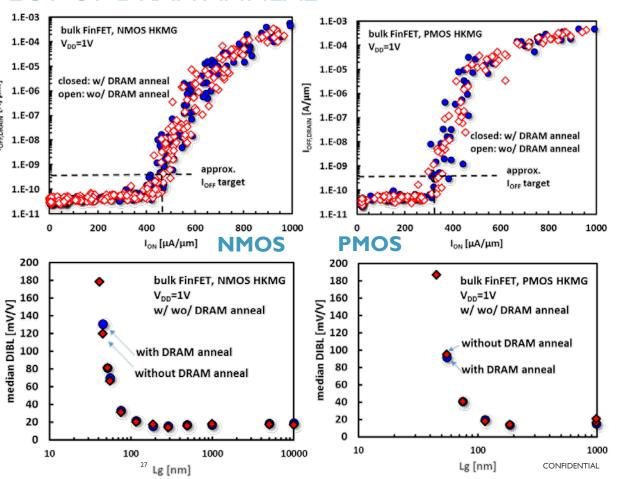


- D&GR AIO cap:
 - Shift preserved down to narrow FinFETs
 - 150mV shift obtained at 15-20nm FinW

Channel implant

26


 Very limited shift with the chosen implant conditions



CONFIDENTIAL

THERMAL STABILITY: EFFECT OF DRAM ANNEAL

- No effect of DRAM anneal (650°C, 4 hours) on gate stack (expected from planar D&GR baseline)
- No effect of DRAM anneal on I_{ON}/I_{OFF} and short channel margin (potential model: junction diffusion corrected by electrostatic control)

OUTLINE

- Introduction
- FinFET integration in memory periphery
 - Process/device pathfinder lot: module development status
 - Key challenges & outlook
- Electrical evaluation of FinFET pathfinder
 - Device performance: HKMG vs SiON/poly
 - Threshold voltage tuning
 - Thermal stability
- Conclusions and outlook

CONCLUSIONS

- Process/Device pathfinder for FinFET integration in memory periphery successfully fabricated and evaluated
 - 40nm fin height, unichannel NFET & PFET
 - Gate-first SiON/poly and HKMG
- Initial module development completed, key challenges identified
 - Key modules set up for HKMG gate first integration on 40nm fins
 - Challenging gate patterning for SiON/poly
- Electrical performance close to pathfinding targets
 - Acceptable I_{ON}/I_{OFF} and DIBL at Lg~55-66nm, competitive performance wrt planar baseline
 - Successfully demonstrated D&GR HKMG scheme on FinFET with MgO and AlO eWF caps
 - Initial exploration of V_{TH} tuning options for HKMG and poly/SiON
 - Excellent thermal stability of gate stacks and junctions

OUTLOOK

- Process optimization for 40nm fins
 - Improvement of polySi uniformity and planarity to enable gate etch learning

30

- Process window exploration for SiON/poly gate etch
- Identification and reduction of process variability sources
- Tall fin demonstration
 - Extension/development of process modules for 80nm fin height
- Device optimization
 - Assessment of maximum V TH tunability in D&GR HKMG scheme
 - Further exploration of V TH tuning via implantation

