

R105

NOW IN COURSE:

2T0C electrical assessment

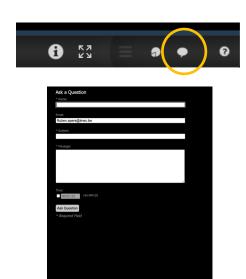
Attilio Belmonte

OPEN TO:

Globalfoundries, Intel, Sony, TSMC, Samsung, Micron, SKHynix, Qualcomm, Kioxia, Western Digital, Huawei, KU Leuven, UGent

If you have questions?

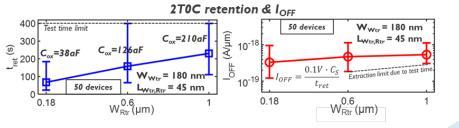
3 min Q&A slot at the end of each presentation



Online Viewers

You can post your questions during the presentation by clicking on the 'text balloon'

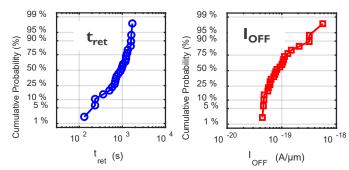
The session chair will handle all questions 'Live' at the end of the presentation.


If you are watching in delay, you can still post your questions. These questions will be answered by email.

6-months progress

300-mm FRONT-GATED IGZO TRANSISTORS

2T0C Gate-First structures:


- First reliable assessment of:
 - retention time $\rightarrow \sim 150$ s for $C_{ox} = 126$ aF
 - $I_{OFF} = 3 \times 10^{-19} A/\mu m$

PTW October 2020

- 2T0C implementation for Gate-Last devices
 - Median retention time > 900s for $C_{ox}=127aF$ (Gate-Last with oxygen-tunnel)
- First assessment of 2T0C retention for spinel and ALD a-IGZO

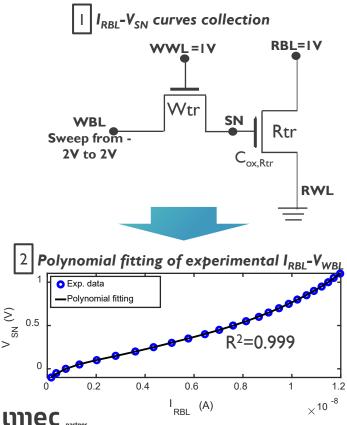
Gate-Last with oxygen tunnel

echnical

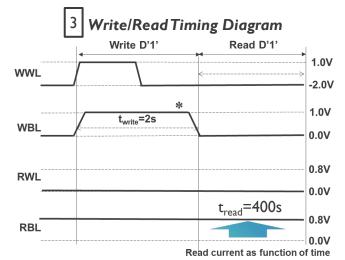
Outline

- Introduction: Previous 2T0C results on Gate-First Devices
- 2T0C results in Gate-Last devices
 - Effect of oxygen-tunnel on retention / off-current
- Gate First: 2T0C structures with different IGZO phase / deposition method
 - CAAC / Spinel IGZO
 - ALD a-IGZO
- Conclusions

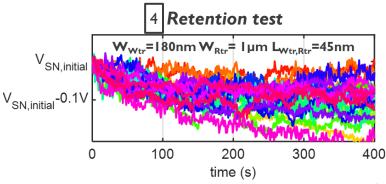
confidential


Outline

- Introduction: Previous 2T0C results on Gate-First Devices
- 2T0C results in Gate-Last devices
 - Effect of oxygen-tunnel on retention / off-current
- Gate First: 2T0C structures with different IGZO phase / deposition method
 - CAAC / Spinel IGZO
 - ALD a-IGZO
- Conclusions

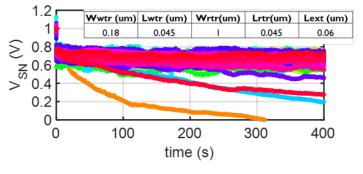


Retention assessment method

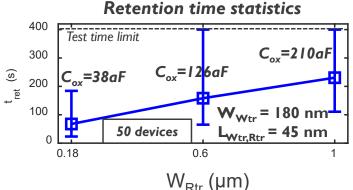

Indirect monitoring of the storage-node voltage evolution

(V) NS V

*WBL=IV for Is after WWL transition: Avoiding C discharge during WWL transition



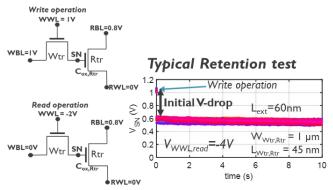

 I_{RBI} is translated into V_{SN} by the polynomial fitting


confidential

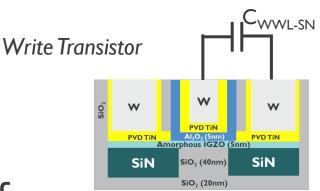
Retention test: retention time scales with Cox

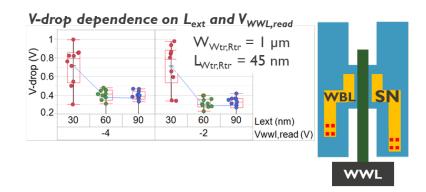
Retention assessment - 50 devices tested

Median $t_{ret} > 60s$ achieved for $C_{ox} = 38aF$ $W_{Rrr} = I \mu m$ and $L_{Rrr} = 45nm \rightarrow > 25\%$ of the bits show $t_{ret} > 400s$


W

Amorphous IGZO (10nm)
SiO₂ (20nm)
Al₂O3 (15nm)


Highly-doped Si Substrate


High gate-drain capacitance may hinder 2T0C retention assessment

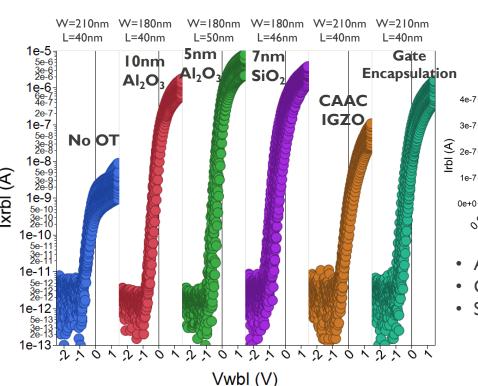
in Gate-Last PTW 10/2020 R104

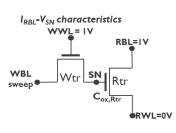
Initial V-drop always observed in the write/read transition

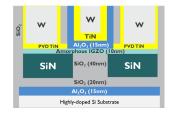
- Strong dependence of V-drop on L_{ext} and $V_{WWL,read}$
- Capacitive coupling between SN and WWL
 - \rightarrow V_{WWL} transition from 1V to -2V induces partial SN discharge

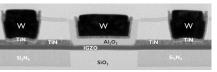
 C_{GD} is expected to be higher in Gate-Last configuration C_{GD} increases for thinner gate dielectric

Low V_{SN} after the transition between write and read?


confidential


Outline


- Introduction: Previous 2T0C results on Gate-First Devices
- 2T0C results in Gate-Last devices
 - Effect of oxygen-tunnel on retention / off-current
- Gate First: 2T0C structures with different IGZO phase / deposition method
 - CAAC / Spinel IGZO
 - ALD a-IGZO
- Conclusions



Id-Vg characteristics of read transistors

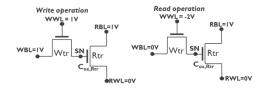
after 400s retention test

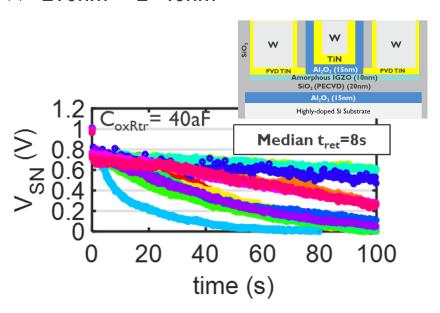
Anneals were optimized to have similar V_{th} in all split

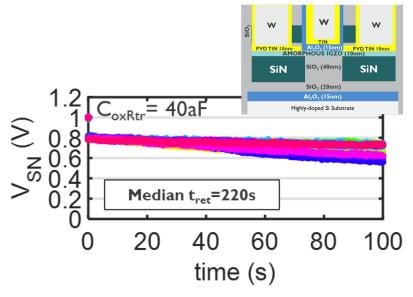
Vwbl sweep

- Gate-Last reproducibility observed also for 2T0C structures
- Slight V_{th} degradation after 400-s stress on read transistor
 - \rightarrow Polynomial fitting of a single I_D - V_G may be misleading
 - \rightarrow Weighted average between the two I_D-V_G curves*

3e-7

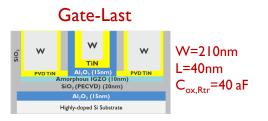

1e-7

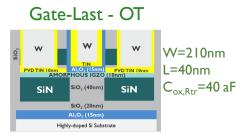

Vwbl (V)

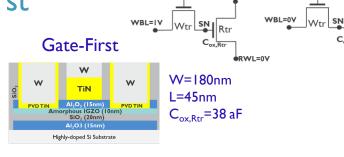

Effect of Oxygen Tunnel on 2T0C retention

W=210nm - L=40nm

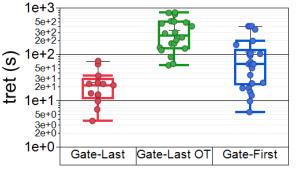
25 devices – different colors → different dies

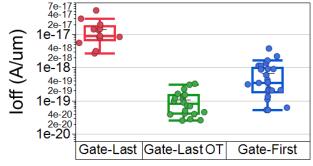


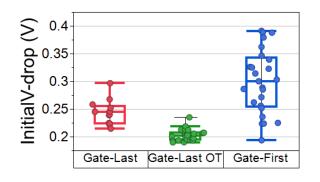

Strong improvement in 2T0C retention thanks to the oxygen tunnel


More efficient defect passivation in the channel

Benchmarking against reference Gate-First



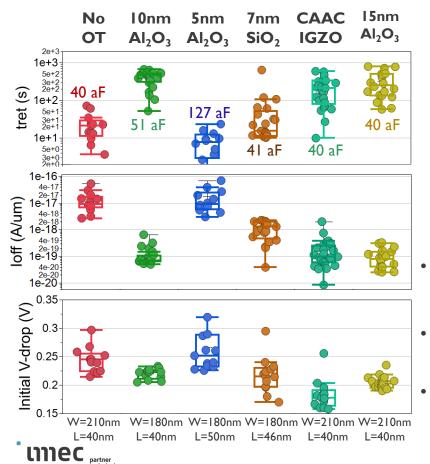


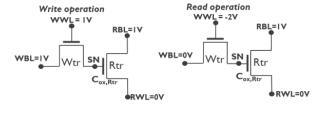


Write operation

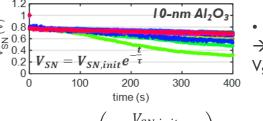
RBL=IV

Read operation


RBL=IV


RWL=0V

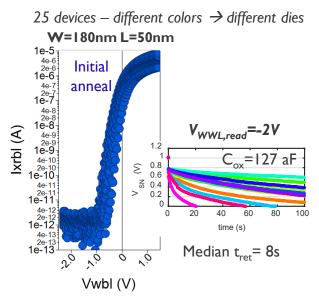
- Gate-Last with oxygen tunnel enables longer retention thanks to lower l_{OFF}
 →More efficient defect passivation in write transistor channel
- Initial V-drop is lower than in Gate-First → to be investigated



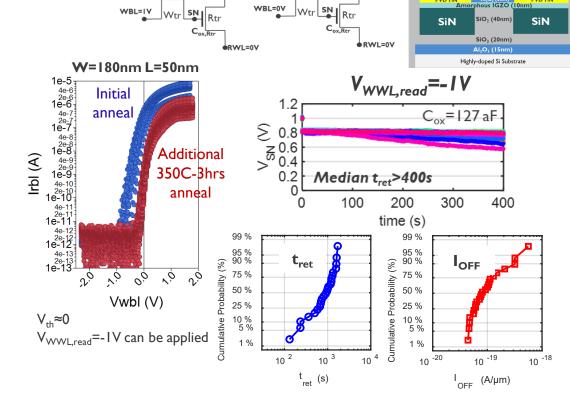
2T0C retention GL - Summary

• t_{ref}>400s in some structures \rightarrow t_{ret} and I_{OFF} extrapolated from V_{SNI} exponential decay

$$t_{ret} = ln\left(\frac{V_{SN,init}}{V_{SN,init} - 0.1V}\right) \cdot \tau$$
 $I_{OFF} = \frac{V_{SN,init} \cdot Cox_{Rtr}}{\tau \cdot W_{Wtr}}$


$$I_{OFF} = \frac{V_{SN,init} \cdot Cox_{Rti}}{\tau \cdot W_{Wtr}}$$

Longest retention time (>400s) and lowest I_{OFF} achieved with 10-nm Al₂O₃ gate dielectric + oxygen tunnel


- Initial V-drop depends on gate dielectric thickness
 - Dependence on material (CAAC vs amorphous) to be investigated
 - High I_{off} extracted for 5-nm $Al_2O_3 \rightarrow High I_{gate}$ at -2V?
 - Lower V_{WWI} to prove the impact of I_{gate}

Effect of V_{WWL,read} on retention time

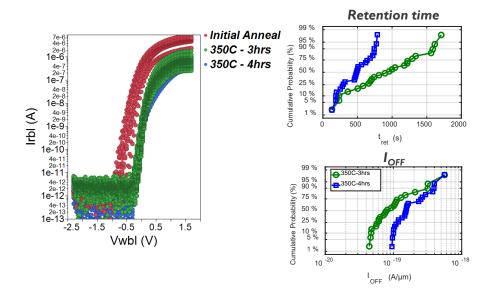
5nm Al₂O₃ with oxygen-tunnel

- V_{th} <-0.5V
- →Less negative V_{WWL,read} cannot be applied
- →Additional anneal to increase V_{th}

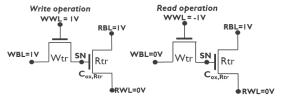
Read oberation

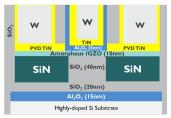
RBL=IV

Write operation

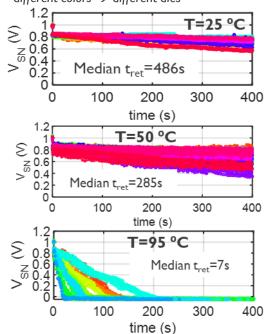

RBL=IV

- Lower $|V_{WWL,read}| \rightarrow best retention ever$
- Benefit of <u>higher C_{ox,Rtr} without penalty in I_{OFF}</u>


Effect of additional O_2 -anneal and retention at high temperature


W=180nm L=50nm

Additional anneal does not improve V_{th} \rightarrow But it induces I_{OFF} and t_{ret} degradation



Retention at high temperature

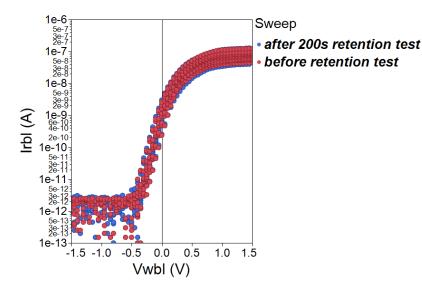
25 devices − different colors → different dies

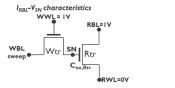
Current fluctuation at high temperature

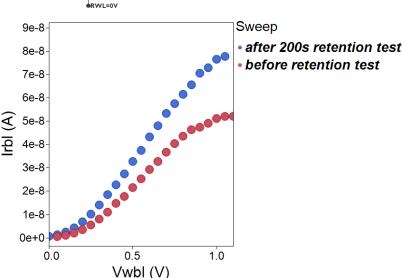
→ Retention can still be assessed

Strong V_{SN} discharge at 95 °C

Outline


- Introduction: Previous 2T0C results on Gate-First Devices
- 2T0C results in Gate-Last devices
 - Effect of oxygen-tunnel on retention / off-current
- Gate First: 2T0C structures with different IGZO phase / deposition method
 - CAAC / Spinel IGZO
 - ALD a-IGZO
- Conclusions




Significant V_{th} degradation after retention test in

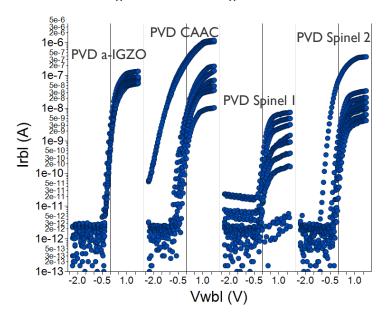
Gate-First devices

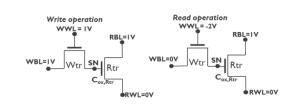
W=180nm L=45nm

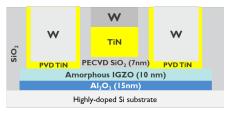
- Strong V_{th} degradation induced by H diffusion from PECVD SiO₂ → see R106 / R107
- Weighted average between the two I_{RBL}-V_{WBL} curves necessary to have valid retention assessment*

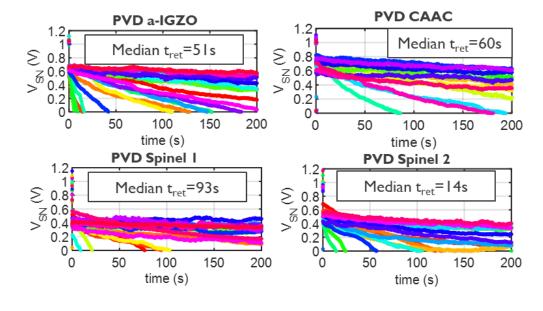
 → Unstable test-vehicle limits the learning for Gate-First devices

W


PECVD SiO₂ (7nm) p
Amorphous IGZO (10 nm) AI_2O_3 (15nm)
Highly-doped Si substrate

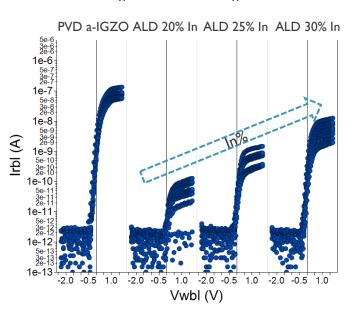

W

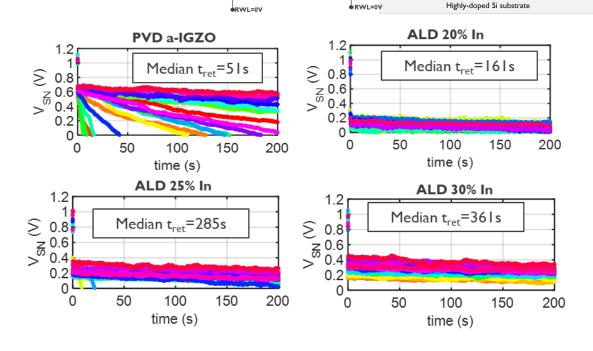

Impact of IGZO Phase


W=180nm L=45nm; $C_{ox,Rtr}=40$ aF

13 devices − different colors → different dies

- Large variability in transfer characteristics (PTW 10/2020 R106) → large variability in 2T0C retention
- No major impact of IGZO phase on retention
- Strong variability also for initial V-drop


s-IGZO I	GZO 6 nm template: IGZO 90% O ₂ , RT
s-IGZO 2	GZO 6 nm template: IGZO 90% O ₂ , RT - O ₂ anneal 500 °C



Impact of IGZO Deposition method

W=180nm L=45nm; $C_{ox,Rtr}=40$ aF

13 devices – different colors \rightarrow different dies

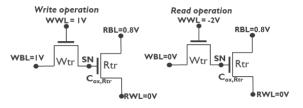
Read operation

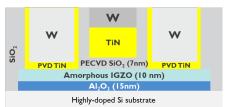
RBL=IV

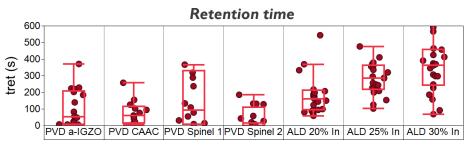
Strong initial V-drop for ALD IGZO → V-drop not only due to WWL-SN capacitive coupling

Write operation

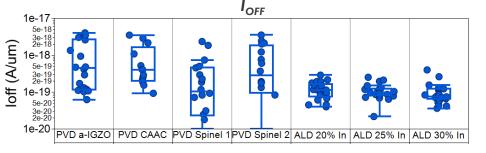
Promising retention with ALD IGZO \rightarrow to be assessed on Gate-Last

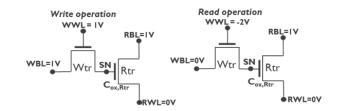

W

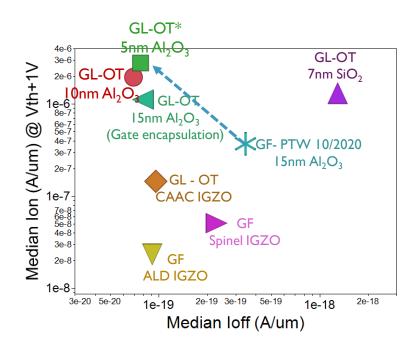

PECVD SiO₂ (7nm)

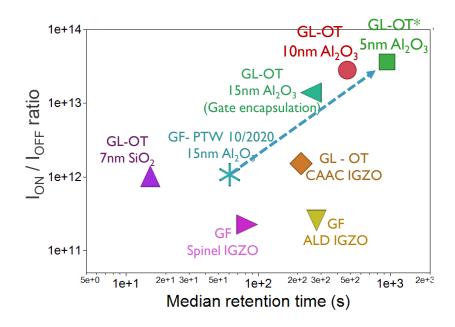

Amorphous IGZO (10 nm) Al₂O₃ (15nm)


W


Summary of Gate-First results

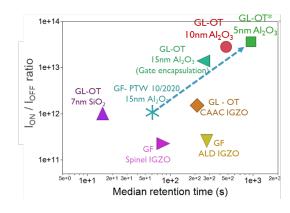



- Large variability hinders the learning for different channel materials
- V-drop dependence on channel material to be investigated
- Promising retention with ALD IGZO
 → To be re-assessed in Gate-Last devices



21

Summary of I_{ON} / I_{OFF} / retention time



$$*V_{WWL,read} = -IV$$

Conclusions

- 2T0C retention assessed on Gate-Last (w. and w/o Oxygen Tunnel) and Gate-First with different IGZO phase / deposition method
- Gate-Last with oxygen tunnel ensures better retention thanks to lower I_{OFF}
- Initial V-drop depends on device architecture and channel material
- 5nm Al_2O_3 gate dielectric:
 - Retention and I_{OFF} can be improved by reducing V_{WWL,read}
- Gate-Last is a more reliable test-vehicle for 2T0C assessment:
 - Lower initial V-drop
 - Better reproducibility across the wafer

Outlook

- Focus on understanding the trends observed in Gate-First and Gate-Last
 - Impact of architecture and channel material on initial V-drop
 - Effect of gate V-stress on 2T0C retention
- AC test implementation
- 2T0C and 2T1C implementation for best Gate-Last and Gate-First devices with oxygen tunnel

23

Acknowledgments

2T0C characterization

Subhali Subhechha

Hyungrock Oh

Albert Vanhelmont

Gregor Vercaigne

Tom Daenen

Luc Dupas

Integration

Hubert Hody

Nouredine Rassoul

CMP

Lieve Teugels

Diana Tsvetanova

Film deposition

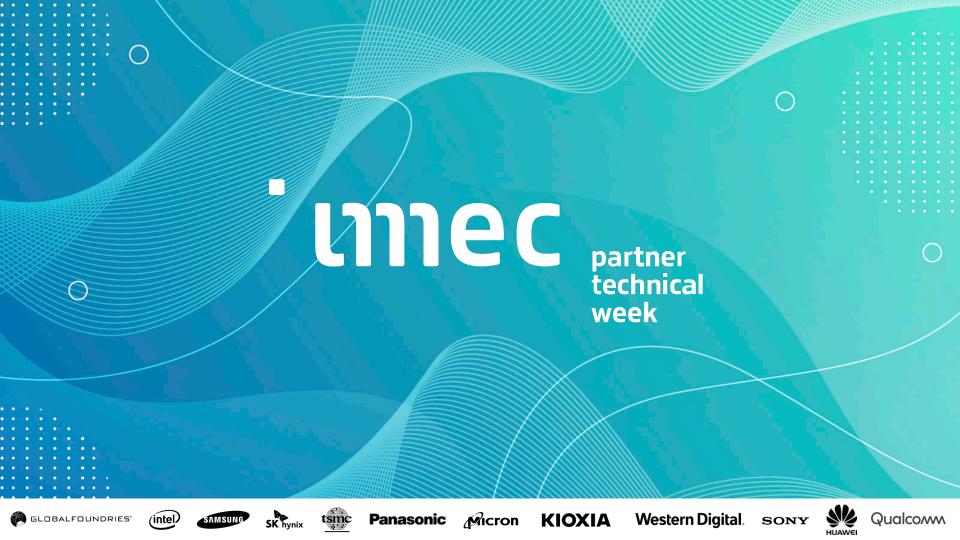
Harold Dekkers

Etch

24

Harinarayanan Puliyalil

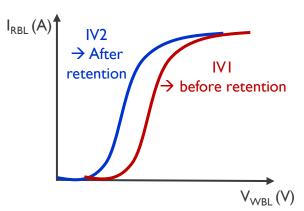
Ming Mao


Laurent Souriau

IGZO Team Management

Romain Delhougne

Gouri Sankar Kar



Backup Slides

Weighted average between I_{RBI} before retention and after retention

Purpose: consider V_{th} degradation in the V_{SN} calculation

For each time step t_n, the weighted average between the two I_{RRI} -V_{WRI} curves is calculated:

$$N_{\text{steps}}$$
= total number of time steps during read operation


For each time step
$$t_n$$
:
 $f_{p,n}$ = polynomial fitting of IVavg (t_n)
 $V_{SN}(t_n)$
= $fp_n(IRBL(t_n))$

$$IVavg\left(t_{n}\right) = \frac{\left(IV1 \cdot N_{steps}\right) + \left(IV2 \cdot 0\right)}{N_{steps}} \qquad \text{First time step} \Rightarrow \text{only IVI is considered}$$

$$IVavg\left(t_{n}\right) = \frac{\left(IV1 \cdot \left(N_{steps} - n\right)\right) + \left(IV2 \cdot n\right)}{N_{steps}} \qquad \text{Time step n} \Rightarrow \text{weighted average between IVI and IV2}$$

$$N_{steps} \qquad \qquad \text{between IVI and IV}$$

$$IVavg (t_{Nsteps}) = \frac{(IV1 \cdot 0) + (IV2 \cdot N_{steps})}{N_{steps}} \qquad \qquad \text{Last time step} \Rightarrow \text{only IV}$$

Last time step → only IV2 is considered

27