

Adv. Packaging report by Romain FRAUX December 2018 – Version 2

Versions of the Report

Version	Date	Updates
V1	15/12/2018	o Initial release
V2	02/01/2019	 Added DRAM Driver Die ✓ Interposer μBumps Tweak Added GPU Die ✓ μBumps dimensions ✓ Interposer μBumps dimensions: added middle and side differences Added Interposer Die ✓ Reticle Stitching size and location ✓ μBumps Dimensions ✓ L/S Width

Table of Contents

Overview	Introduction	Λ		Interposer Die	
Overview /	Executive Summary	4	0	✓ View, Dimensions & Marking	
_	•				
0	Reverse Costing Methodology			μυαπησια 13 / 3	
Company Pi	rofile	8	0	✓ Interposer Cross-Section Comparison with AMD Fury X including SK-Hynix HBM1	
0	2.5D & 3D Packaging Market		O	companson with this rary Americang Sk Hyma Heini	
0	NVIDIA Company Profile		Manufacturir	ng Process Flow	95
0	NVIDIA Company Frome NVIDIA Tesla P100 Characteristics		0	Global Overview	
	Volta GPU Supply Chain		0	GPU Process Description & Foundry	
0	TSMC CoWoS		o Interposer Process Flow & Foundry		
0			0	HBM2 Stack Process Flow & Foundry	
0	Samsung HBM2		0	CoWoS Process Flow & Foundry	
Physical Ana	alysis	21	Cost Analysis		12
0	Summary of the Physical Analysis		0	Summary of the cost analysis	
0	Physical Analysis Methodology		0	Yields Explanation & Hypotheses	
0	NVIDIA Tesla P100 Teardown		0	GPU Front-End & Die Cost	
0	Package		0	HBM2 Stack	
	✓ Views & Dimensions			✓ TSV Manufacturing Cost	
	✓ Passives Assembly			✓ Micro-Bumping Manufacturing Cost	
	✓ Laminate & Frame Cross-Section			✓ Dies Cost (DRAM + Logic)	
0	DRAM Die			✓ HBM2 Stack Cost	
O	✓ View, Dimensions & Marking		0	Interposer	
	✓ µBumps & TSVs			✓ TSV Manufacturing Cost	
				✓ Microbumping Cost	
				✓ Interposer Cost	
o GPU Die			0	CoWoS Assembly Manufacturing Cost	
	✓ View, Dimensions & Marking		0	Final Component Cost	
	√ µBumps		Estimated Pri	ice Analysis	14
	✓ GPU Cross-Section		O	Manufacturer Financial Ratios	17
0	Filler Die		0	Component Manufacturer Price	
	✓ View, Dimensions & Marking				
	✓ Filler Cross-Section		<u>Feedbacks</u>		15
			System nlus (Consulting services	15

OVERVIEW METHODOLOGY

- Executive Summary
- o Reverse Costing Methodology
- o Glossary

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Executive Summary

- Targeted for High Performance Computing (HPC) and deep learning, the NVIDIA Tesla V100 includes3D stacked memory with 2.5D integration on a silicon interposer in a Chip-on-Wafer-on-Substrate (CoWoS) process.
- The Tesla V100 accelerators are equipped with 16GB or 32GB of second generation high bandwidth memory (HBM2).
- HBM2 greatly increases memory capacity and bandwidth over first generation HBM1 technology. HBM1 was limited to 1GB of memory per stack of four dynamic random access memory (DRAM) die with maximum capacity of 256MB and 125GB/sec of bandwidth. That compares to 8GB of memory per stack of eight stacked DRAM dies with maximum capacity of 1GB and 180GB/sec bandwidth for HBM2.
- The single 55mm x 55mm 12-layer ball grid array (BGA) package of the NVIDIA Tesla V100 includes more than 4,000 mm² of silicon area. Two industry leaders, TSMC and Samsung, had to come together to deliver this much silicon area in a package.
- TSMC is the main provider for the Tesla V100. Using its 2.5D CoWoS platform, it manufactures the GV100 GPU die, featuring a 12nm FinFET process and 21.1 billion transistors. It also produces a large silicon interposer on top of which the GPU is assembled at the wafer-level with its four HBM2 stacks.
- Samsung provides the HBM2 stacks. A 3D assembly process yields HBM2 stacks composed of four 1GB DRAM memory dies and one buffer die, connected with via-middle through-silicon vias and micro-bumps.
- The report includes a complete physical analysis of the packaging process, with details on all technical choices regarding process, equipment and materials. Also, the complete manufacturing supply chain is described and manufacturing costs are calculated.

Reverse Costing Methodology

Overview / Introduction

- o Executive Summary
- **Reverse Costing** Methodology
- o Glossary

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

The reverse costing analysis is conducted in 3 phases:

Package is analyzed and measured The dies are extracted in order to get overall data: dimensions, main blocks, pad number and pin out, die marking Setup of the manufacturing process.

Setup of the manufacturing environment Cost simulation of the process steps

Supply chain analysis Analysis of the selling price

Glossary

Overview / Introduction

- o Executive Summary
- o Reverse Costing Methodology
- Glossary

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

<u>Feedback</u>

About System Plus

Acronym	Definition
Al	Aluminum
ASIC	Application Specific Integrated Circuit
BGA	Ball Grid Arra
CMOS	Complementary Metal–Oxide–Semiconductor
CoWoS	Chip-on-Wafer-on-Substrate
DRAM	Dynamic Random Access Memory
DRIE	Deep Reactive Ion Etching
EDX	Energy Dispersive X-ray spectroscopy
G&A	General & Administrative
GPU	Graphics Processor Unit
НВМ	High Bandwidth Memory
HMC	Hybrid Memory Cube
OEM	Original Equipment Manufacturer
PCB	Printed Circuit Board
PGDW	Potential Good Dies per Wafer
R&D	Research and Development
SEM	Scanning Electron Microscope
Si	Silicon
SiO2	Silicon Dioxide
TSV	Through-Silicon Via

COMPANY PROFILE

Market Forecast

Overview / Introduction

Company Profile & Supply Chain

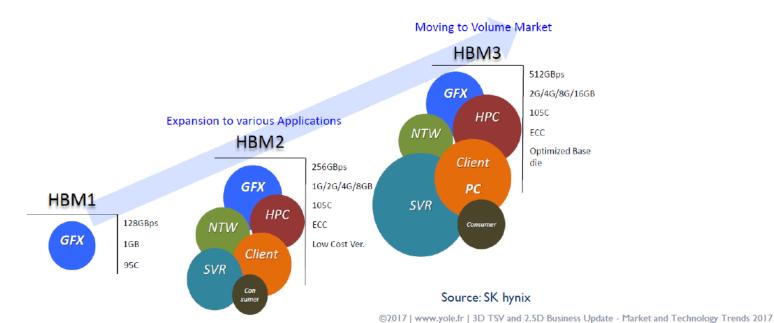
- ▶ 2.5D & 3D Packaging Market
- o NVIDIA Profile
- NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

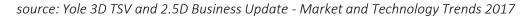
About System Plus

HIGH-BANDWIDTH MEMORY ROADMAP

- High-Bandwidth Memory product is continuously adopted by players and is integrated in many advanced and essential products.
- AMD adopted first HBM 1st generation in 2015 in high-performance graphic card for gaming.
- Since AMD, others have followed such as Nvidia, Xilinx, Intel pushing HBM2 products in HPC, servers and other applications.
- A 3rd generation is in preparation by memory manufacturers (Samsung & SK hynix) enabling twice the data flowrate.

HBM will penetrate various market segments in the short future

Because of further


adoption of

HBM2, a 3rd generation is

under

development

Company Profile & Supply Chain

- ▶ 2.5D & 3D Packaging Market
- o NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Market Forecast

3D STACKED MEMORY CUBE

Technical comparison between HBM and HMC Memory Systems

In terms of packaging, one of the main differences between HMC and HBM is the final integration. HBM will require a silicon interposer mounted on a substrate whereas HMC can be placed directly on an organic substrate.

High Bandwidth Memory Interfaces

- HMC: Stand-Alone Memory Module on Board
- Uses Serial Interface between ASIC and HMC - few high speed signals.
- Wired across system board.
- High speed signals need isolation; Drives number of BGA's up.
- Single fast SERDES lane.
- 15-30 Gbps bidirectional bandwidth.
- · Also requires many isolation pins.
- · HBM: On-Module Memory Integrated w/ Si Interposer
- Uses Parallel Interface many, many, fairly slow signals.
- Generally simpler IO and lower power.
- Too many signals to get off package.
- Lower cost memory, but higher complexity package integration.

- Many slow parallel lanes. ~2 Gbps/line unidirectional.
- 30 Gbps bidirectional BW needs15 parallel signal lines for each direction.

Source: GlobalFoundries

Variables	HBMI	HBM2	HMCI	HMC2	
VDD (V)	1.5	1.5	1.35	1.2	
Max. Data Rate (Gbps)	1	2	15	30	
Bus Width (bits)	1024		4 Links (16 TX	4 Links (16 TX/RX lanes per link)	
Max Stack Bandwidth (GB/s)	128	256	120	320	
Signaling	Sin	Single ended		Differential	
Interface	Wid	Wide parallel		Serial	
Channel overhead	Short		L	Long	
Format	In a Si Interposer		Stand-alone as a complete package		
Control distribution in logic	Simple DRAM		Advanced	Advanced Transactional	

Source: Rambus

©2017 | www.yole.fr | 3D TSV and 2.5D Business Update - Market and Technology Trends 2017

Market Forecast

enabled

performance

hardware for

deep learning

applications

DEEP LEARNING HARDWARE

Hardware for TRAINING require large bandwidth, 3D-based products offer solutions.

INFERENCE require less bandwidth but low latency. Interposer could come as a solution because of its modularity and its capacity to integrate more than 4 chips.

Main players offer clear different product lines as solutions for both steps.

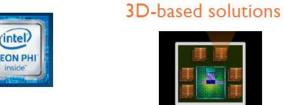
Overview / Introduction

Company Profile & Supply Chain

- ▶ 2.5D & 3D Packaging Market
- o NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

TRAINING

Tesla PI00

Volta

Titan X

XEON

DLIA FPGA based

accelerator

MI6 Vega

RADEON INSTINC

letson TKI/TXI

Tesla P40 and P4 accelerator

Drive PX2

Company Profile – NVIDIA

Overview / Introduction

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

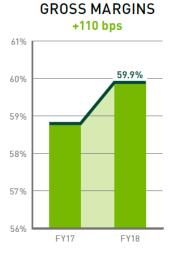
Manufacturing Process Flow

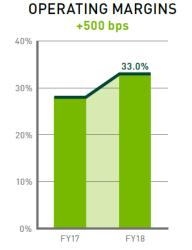
Cost Analysis

Selling Price Analysis

Feedback

About System Plus


NVIDIA Financial Highlights:


- o Sales revenues 2018: \$9.7 Billion
- 59.9% o Gross margin 2018:
- Net income 2018: \$3.0 Billion

NVIDIA Employees:

- o Date of Establishment
 - ✓ April, 1993
- o Headquarter:
 - ✓ Santa Clara, California, USA
 - ✓ 10,299 employees worldwide (as of 29 January, 2017).

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- o TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Company Profile – NVIDIA

- Manufacturing Supply Chain (source: NVIDIA)
 - Semiconductor wafers:
 - > TSMC
 - > Samsung
 - Assembly, Testing and Packaging:
 - > ASE
 - > BYD Auto
 - ➤ Hon Hai Precision
 - > JSI Logistics
 - ➤ King Yuan Electronics
 - > Siliconware Precision Industries
 - Substrates:
 - > Ibiden
 - Nanya Technology
 - ➤ Unimicron Technology
 - Memories:
 - Samsung
 - ➤ SK Hynix

NVIDIA Telsa V100 Characteristics

Overview / Introduction

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- o TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

■ NVIDIA Tesla V100 with Volta GV100 GPU

VOLTA ARCHITECTURE

By pairing CUDA Cores and Tensor Cores within a unified architecture, a single server with Tesla V100 GPUs can replace hundreds of commodity CPU servers for traditional HPC and Deep Learning.

TENSOR CORE

Equipped with 640 Tensor Cores, Tesla V100 delivers 125 teraFLOPS of deep learning performance. That's 12X Tensor FLOPS for DL Training, and 6X Tensor FLOPS for DL Inference when compared to NVIDIA Pascal™ GPUs.

MAXIMUM **EFFICIENCY MODE**

The new maximum efficiency mode allows data centers to achieve up to 40% higher compute capacity per rack within the existing power budget. In this mode, Tesla V100 runs at peak processing efficiency, providing up to 80% of the performance at half the power consumption.

HBM2

With a combination of improved raw bandwidth of 900GB/s and higher DRAM utilization efficiency at 95%, Tesla V100 delivers 1.5X higher memory bandwidth over Pascal GPUs as measured on STREAM. Tesla V100 is now available in a 32GB configuration that doubles the memory of the standard 16GB offering.

SPECIFICATIONS

Tesla V100

Tesla V100

	PCle	SXM2	
GPU Architecture	NVIDIA Volta		
NVIDIA Tensor Cores	640		
NVIDIA CUDA® Cores	5,120		
Double-Precision Performance	7 TFLOPS	7.8 TFLOPS	
Single-Precision Performance	14 TFLOPS	15.7 TFLOPS	
Tensor Performance	112 TFLOPS	125 TFLOPS	
GPU Memory	32GB /16GB HBM2		
Memory Bandwidth	900GB/sec		
ECC	Yes		
Interconnect Bandwidth	32GB/sec	300GB/sec	
System Interface	PCIe Gen3	NVIDIA NVLink	
Form Factor	PCIe Full Height/Length	SXM2	
Max Power Comsumption	250 W	300 W	
Thermal Solution	Passive		
Compute APIs	CUDA, DirectCompute, OpenCL™, OpenACC		

Company Profile & Supply Chain

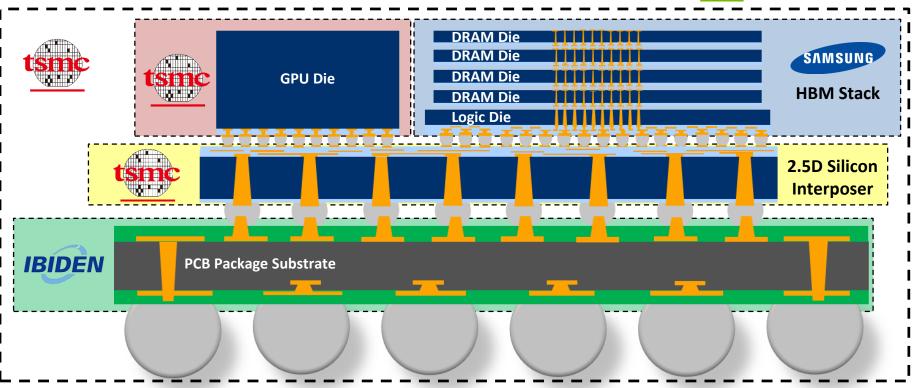
- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- NVIDIA Tesla P100 Characteristics
- ▶ Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

About System Plus

Volta GPU Supply Chain

Component manufacturing supply chain:

Package Manufacturing Supply Chain:

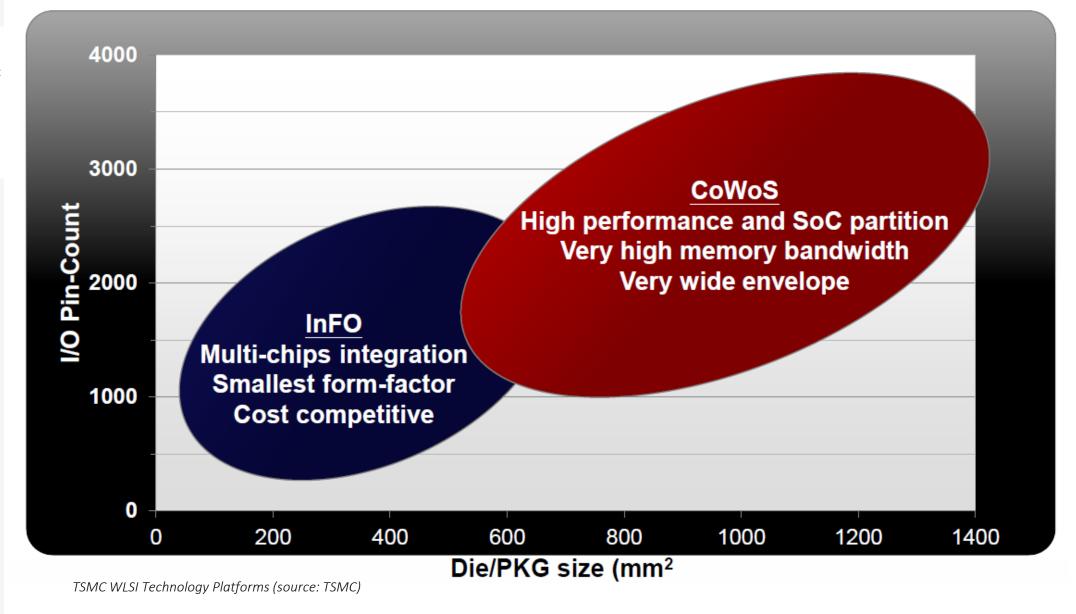
- The HBM stack (memory dies, logic die and 3D interconnection) is made by Samsung in Korea.
- The GPU die is manufactured by TSMC in Taiwan.
- The Interposer is produced by TSMC in Taiwan.
- The PCB package substrate is made by Ibiden in Japan.
- The final assembly (HBM and GPU on interposer, interposer on PCB, passives assembly and BGA balls) is realized by TSMC in Taiwan.

Overview / Introduction

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Overview / Introduction

Company Profile & Supply Chain

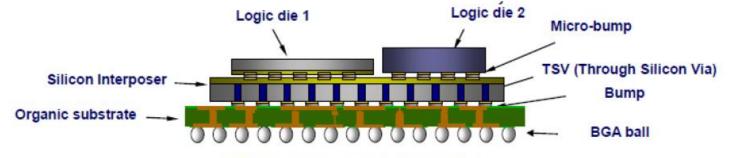
- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

About System Plus

Integrate multiple chips into one single package using a submicron scale silicon interface (interposer)

- Enable higher performance, lower power consumption, and smaller form factor
- Best integrated flow for high yield and reliability

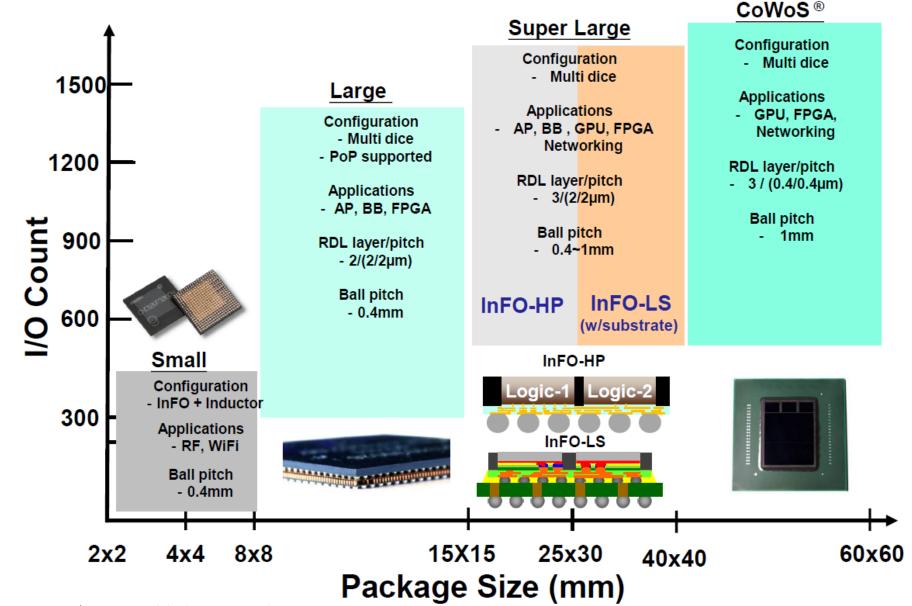
Heterogeneous Integration

Overview / Introduction

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- o Samsung HBM2

Physical Analysis


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

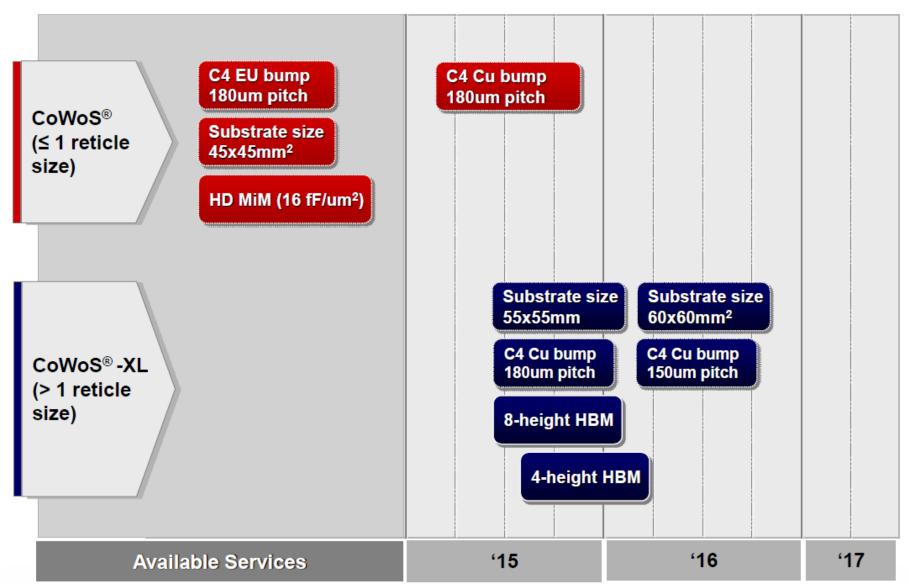
About System Plus

Overview / Introduction

Company Profile & Supply Chain

- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- o NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- ► TSMC CoWoS
- o Samsung HBM2

Physical Analysis


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Samsung HBM2

Overview / Introduction

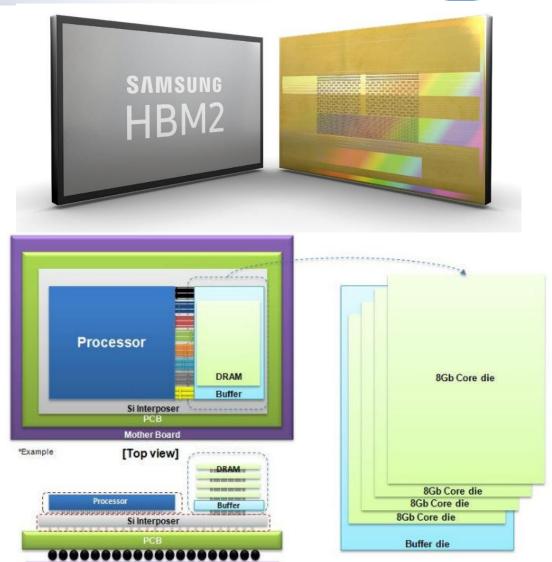
Company Profile & Supply Chain

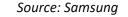
- o 2.5D & 3D Packaging Market
- o NVIDIA Profile
- NVIDIA Tesla P100 Characteristics
- o Volta GPU Supply Chain
- TSMC CoWoS
- ▶ Samsung HBM2

Physical Analysis

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis


Feedback

About System Plus

■ Samsung HBM2 Stack

- Mass production: beginning of 2016
- Stack of 4GB
 - > 4 stacked dies of 1GB
- The 4GB HBM2 package is created by stacking a buffer die at the bottom and four 8-gigabit (Gb) core dies on top. These are then vertically interconnected by TSV holes and microbumps. A single 8Gb HBM2 die contains over 5,000 TSV holes, which is more than 36 times that of a 8Gb TSV DDR4 die, offering a dramatic improvement in data transmission performance compared to typical wirebonding based packages.
- Samsung's new DRAM package features 256GBps of bandwidth, which is double that of a HBM1 DRAM package. This is equivalent to a more than seven-fold increase over the 36GBps bandwidth of a 4Gb GDDR5 DRAM chip, which has the fastest data speed per pin (9Gbps) among currently manufactured DRAM chips. Samsung's 4GB HBM2 also enables enhanced power efficiency by doubling the bandwidth per watt over a 4Gb-GDDR5-based solution, and embeds ECC (error-correcting code) functionality to offer high reliability.

*Example

Mother Board

[Side view]

[4GB HBM2 Package Structure]

PHYSICAL ANALYSIS

Company Profile & Supply Chain

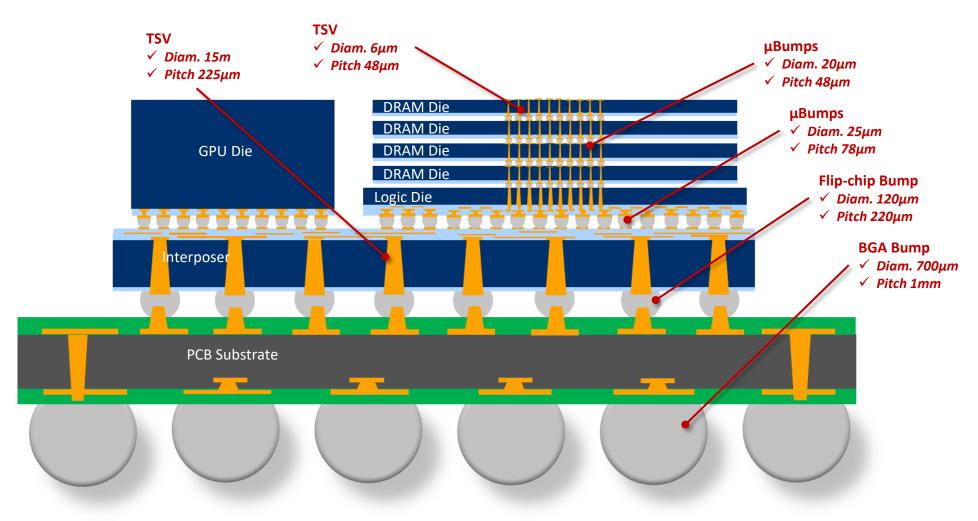
Overview / Introduction

Physical Analysis

- Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Summary of the Physical Analysis

PACKAGE STRUCTURE:

- 3D Packaging: 5 stacked dies with TSV & μBumps (HBM stack).
- 2.5D Packaging: HBM stack and GPU stacked with µBumps on a silicon interposer holding TSV.
- Flip-chip BGA: silicon interposer flip-chipped to a 12-layers PCB substrate

Company Profile & Supply Chain

Physical Analysis

- Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Physical Analysis Methodology

- Package is analyzed and measured.
- The package is opened to get overall die data: dimensions, main characteristics, device marking.
 - o Pictures of selected area are made in order to understand the assembly.
- The dies are separated to get overall die data: dimensions, main blocks, pad number and pin out, die marking.
 - o Removal of metal layers.
 - Pictures (SEM & optical) of selected areas.
 - Cross section to measure thicknesses.

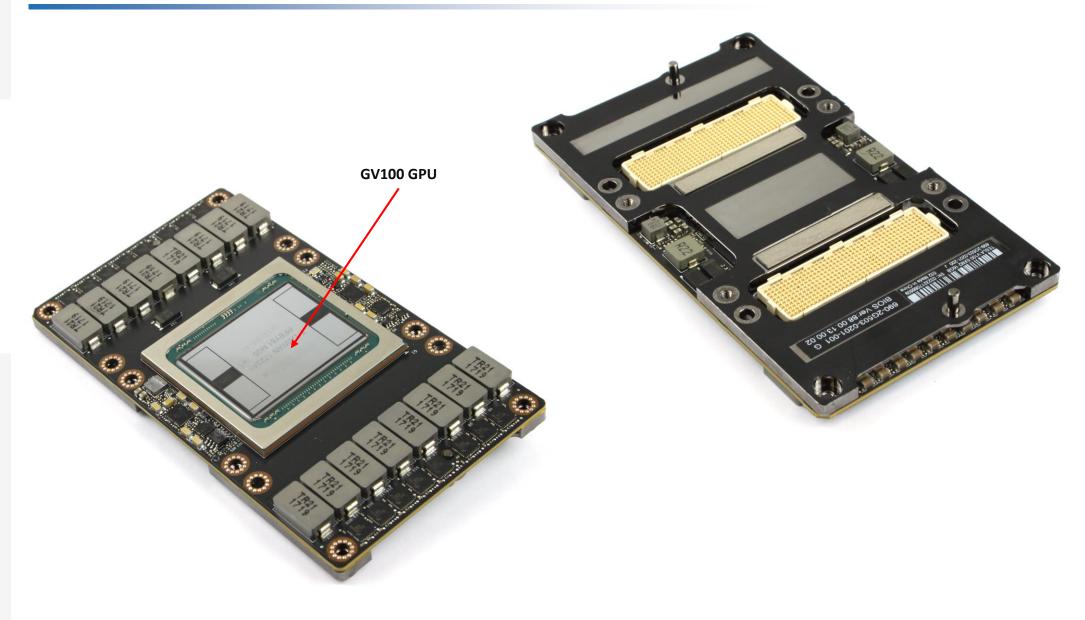
Graphic Card Teardown

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- ▶ Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Graphic Card Teardown

Overview / Introduction

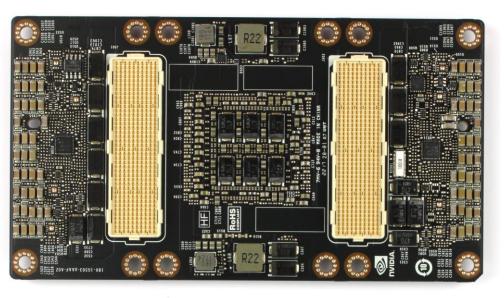
Company Profile & Supply Chain

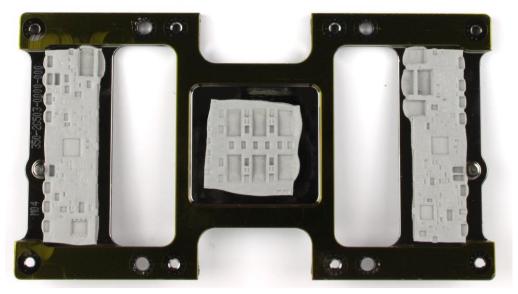
Physical Analysis

- o Summary
- ► Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis


Feedback

About System Plus

Company Profile & Supply Chain

Physical Analysis

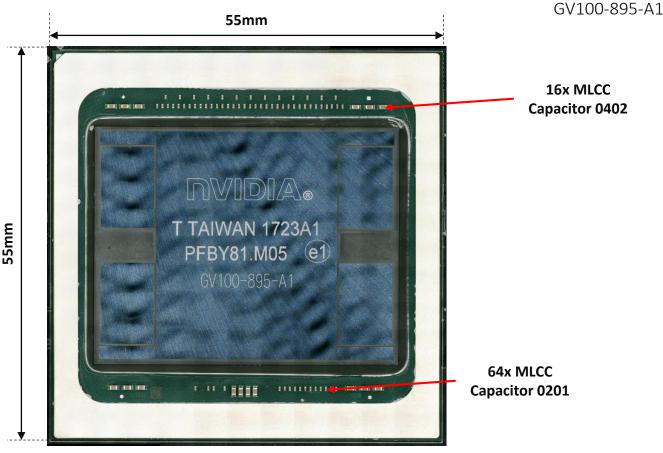
- o Summary
- o Graphic Card Teardown
- Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Package Views & Dimensions

Package: FCBGA 2540-ball

55 x 55 mm Dimensions:

Pin Pitch: 1mm

Package Bottom View ©2018 by System Plus Consulting

Marking:

<logo Nvidia>

PFBY81.M05

T TAIWAN 1723A1

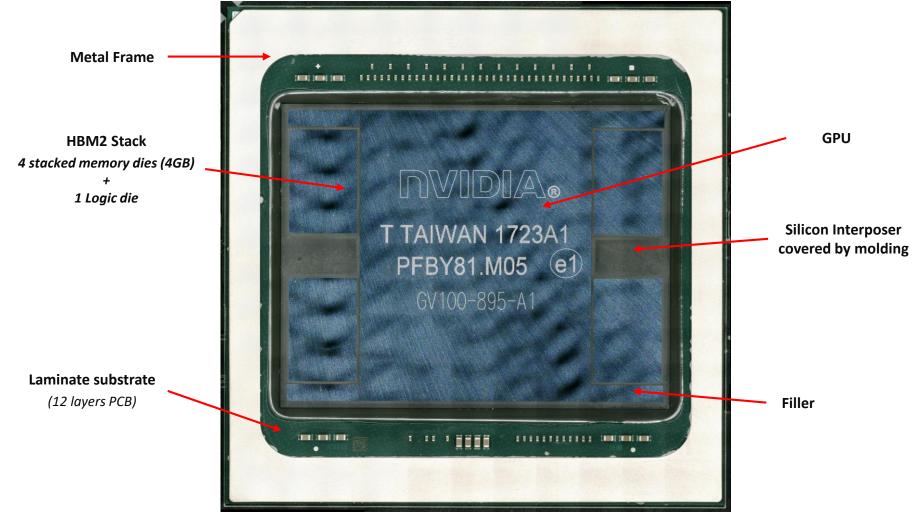
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Package Views & Dimensions

Single package with GV100 GPU and 16GB HBM2 Memory on a silicon interposer.

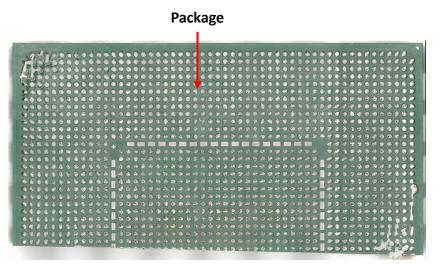
Company Profile & Supply Chain

Physical Analysis

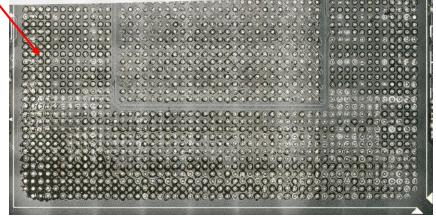
- o Summary
- o Graphic Card Teardown
- Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

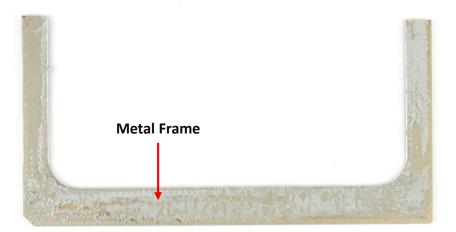
Cost Analysis


Selling Price Analysis

Feedback


About System Plus

Package Views & Dimensions


A cross-section of the package was made before unsoldering to have access to the complete assembly structure.

PCB Board

Package Unsoldered from PCB Board ©2018 by System Plus Consulting

Package

Metal Frame Removed ©2018 by System Plus Consulting

Package Views & Dimensions

Overview / Introduction

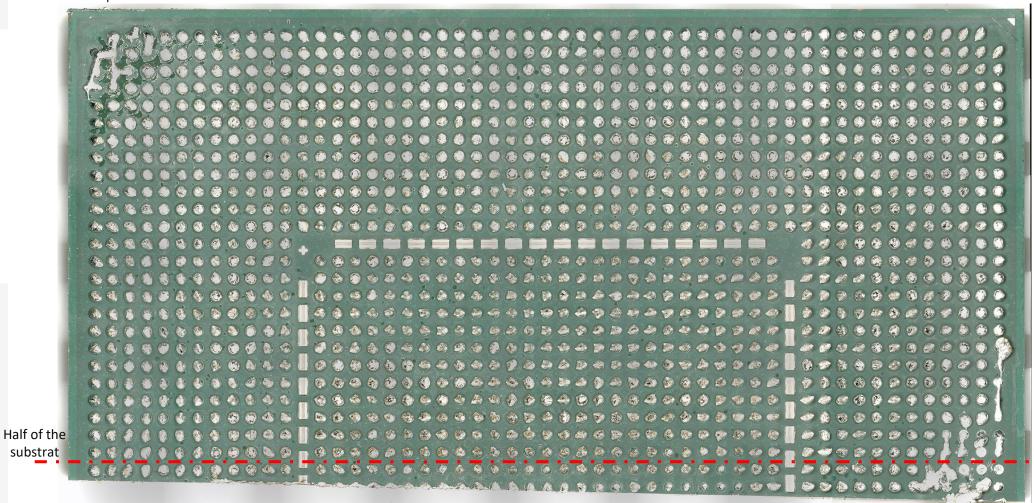
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Estimated number of balls: 2,540

Ball pitch: 1mm

Package Bottom View after Cross-Section ©2018 by System Plus Consulting

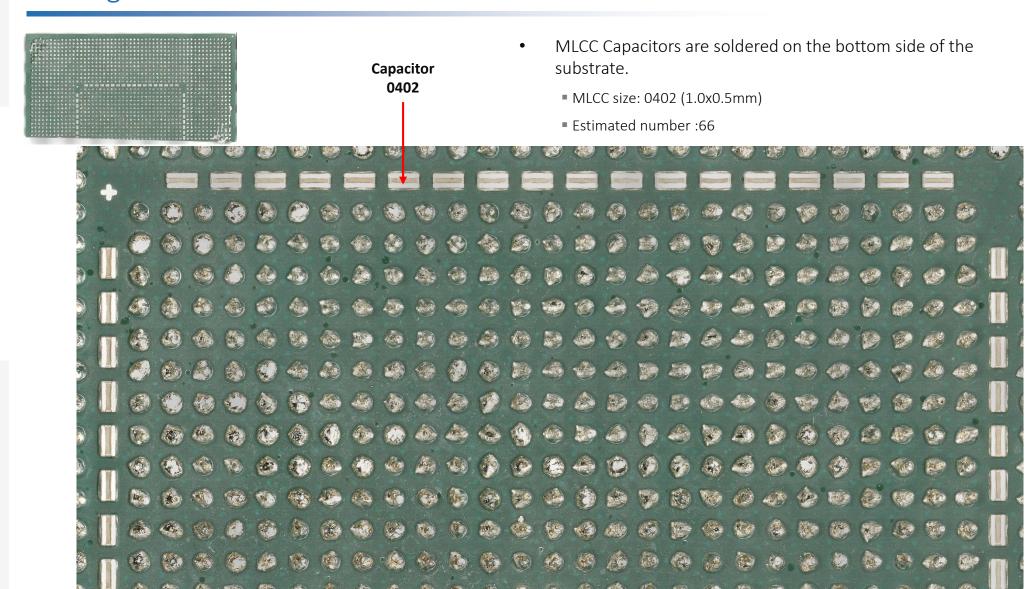
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Package Views & Dimensions

MLCC View ©2018 by System Plus Consulting

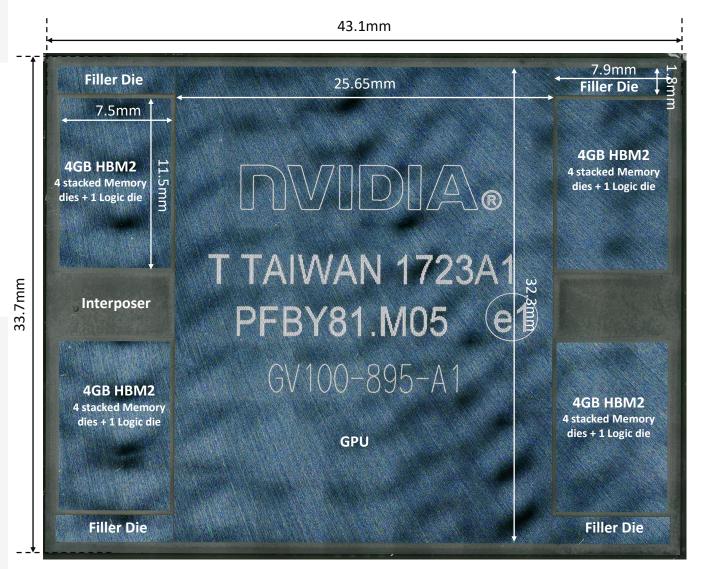
Dies Size

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Die Size (with scribe line):

Interposer Area: 1.452mm²

(43.1x33.7mm)

Nb of candidates per 12-inch wafer: 36

GPU Die Area: 828.5mm²

(25.65x32.3mm)

Nb of candidates per 12-inch wafer: 64

DRAM Dies Area: 86mm²

(11.5x7.5mm)

Nb of candidates per 12-inch wafer: 728

96mm² Logic Dies Area:

(12.0x8.0mm)

• Nb of candidates per 12-inch wafer: 656

Filler Die Area: 14.2mm²

(7.9x1.8mm)

Nb of candidates per 12-inch wafer: 4,396

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Package Opening

Package Top View – Metal Frame Removed ©2018 by System Plus Consulting

Package Top View – Underfill removed and Right HBM Memory Removed ©2018 by System Plus Consulting

Company Profile & Supply Chain

Physical Analysis

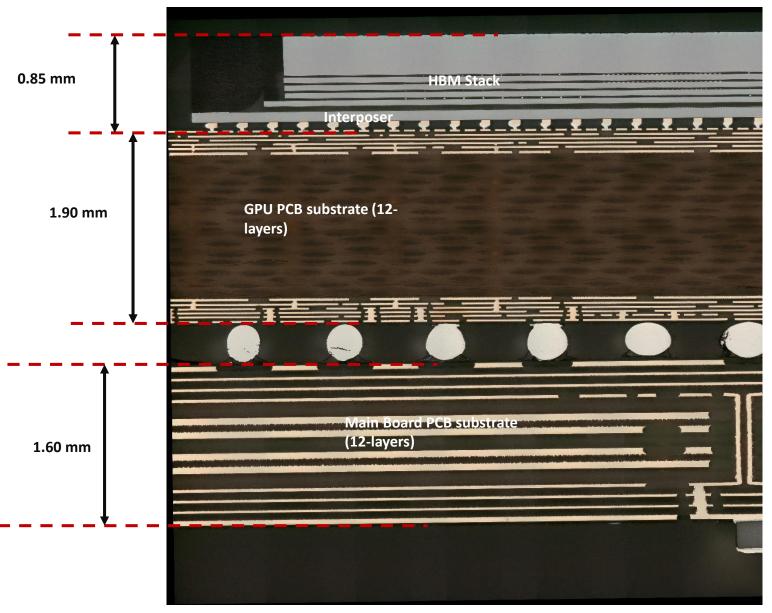
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Board Cross-Section

Board Cross-section plane ©2018 by System Plus Consulting

Board Cross-Section – Laminate Substrate

3.25mm

Overview / Introduction

Company Profile & Supply Chain

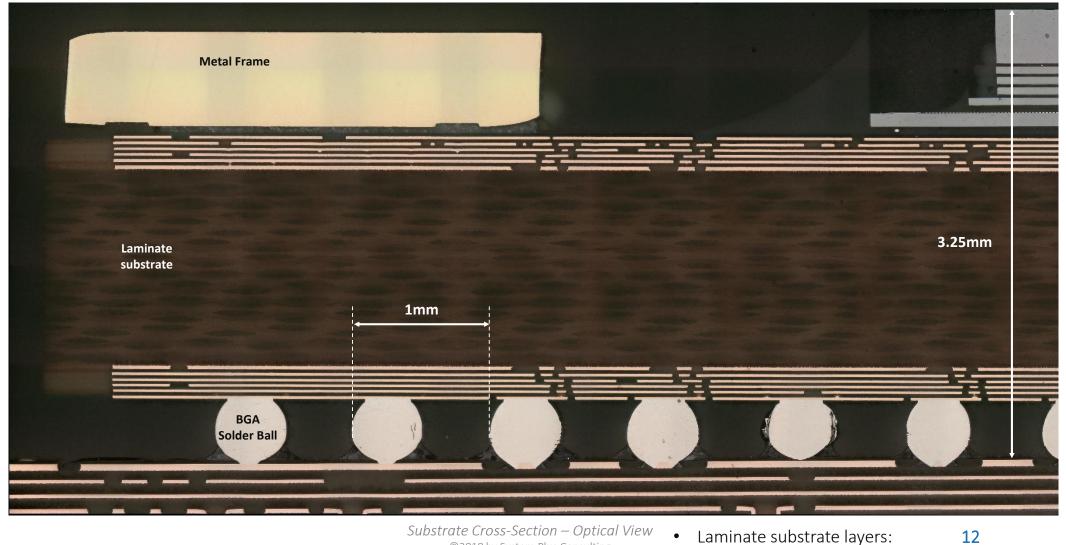
Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

About System Plus

Package total thickness:

Metal frame thickness:

Substrate Cross-Section – Optical View ©2018 by System Plus Consulting

Laminate substrate thickness: 2_mm 0.7mm

Laminate core thickness: 1.4mm

©2018 System Plus Consulting | NVIDIA Tesla V100 GPU 34

Company Profile & Supply Chain

Physical Analysis

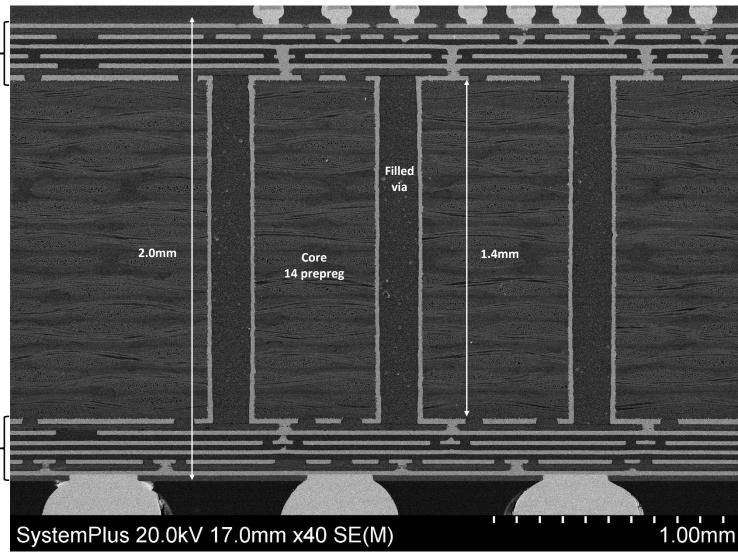
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Board Cross-Section – Laminate Substrate

6 copper layers

- The package laminate is a 12 layers HDI PCB.
 - ✓ PCB thickness: 2mm

 - Copper layers thickness: 18µm
 6 copper ✓ Microvia diameter: 65µm layers

Substrate Cross-Section – SEM View ©2018 by System Plus Consulting

Board Cross-Section – Interposer

Overview / Introduction

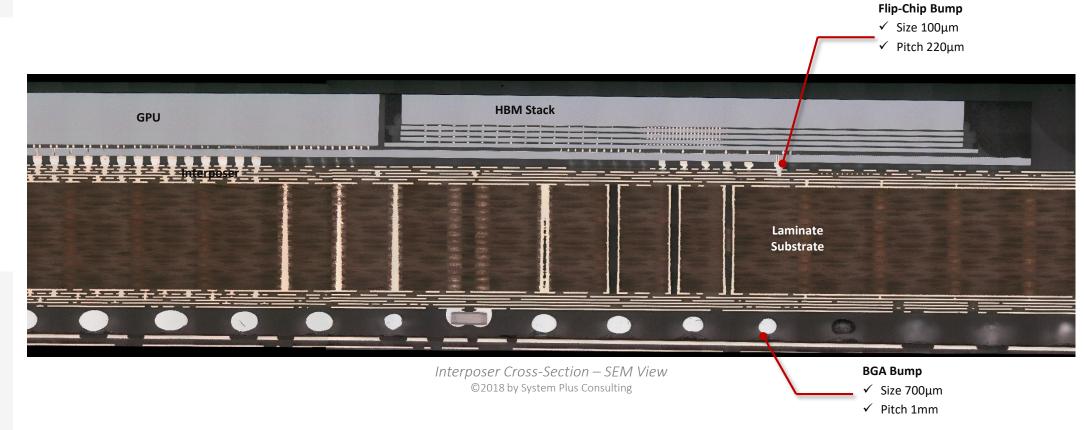
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

HBM stack and GPU die are bonded on an interposer which is flip-chipped to the PCB substrate.

BGA bump pitch: 1000μm

BGA ball diameter: 700μm

Flip-Chip bump pitch: 220μm

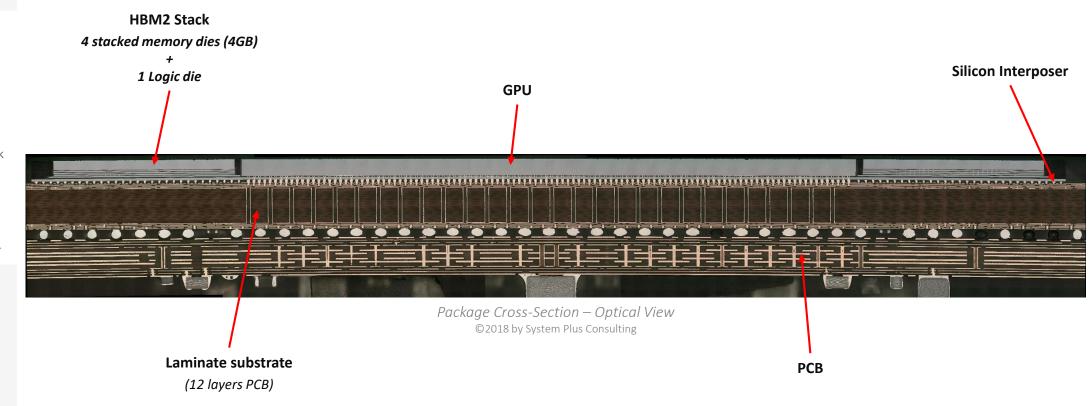
• Flip-Chip bump diameter: 120μm

Board Cross-Section

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

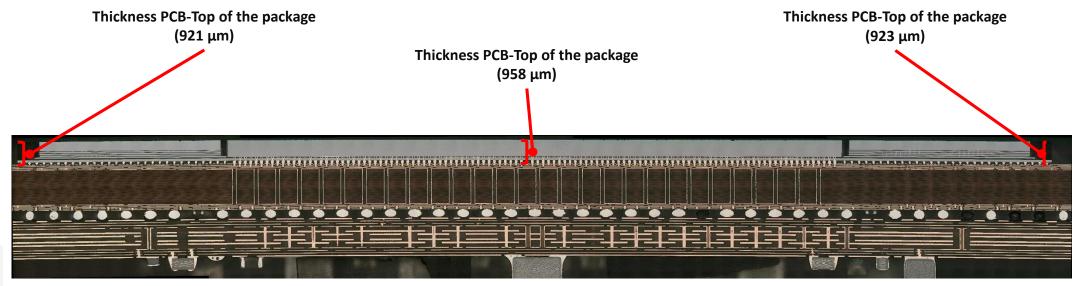
Board Cross-Section

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Package Cross-Section – Optical View ©2018 by System Plus Consulting

• Warpage Estimation: 40 μm

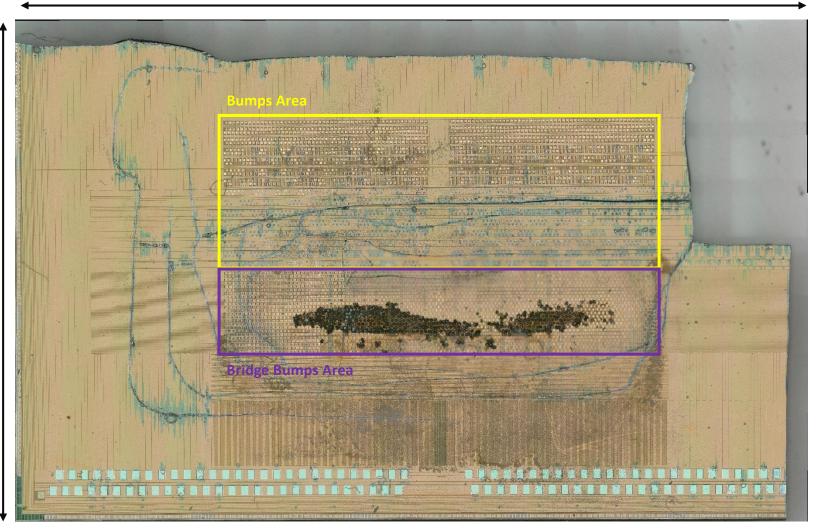
Samsung 1GB HBM2 – Driver Die View & Dimensions

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

12.4 mm

Die Area: 102.9 mm²

(12.4x8.3 mm)

Nb of PGDW

per 12-inch wafer: 604

Pad number: 116

Bridge Bumps Number:

2,400

Bridge Bumps Area:

6.76 mm² (6.04 x 1.12 mm)

Bridge Bumps Fill Factor:

6.5 %

Bumps Number: 1,143

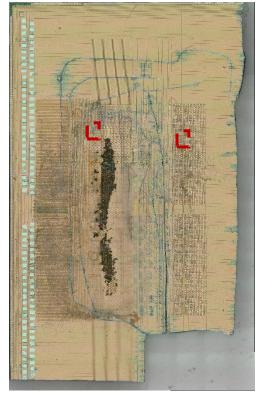
Samsung 1GB HBM2 – Driver Bumps

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

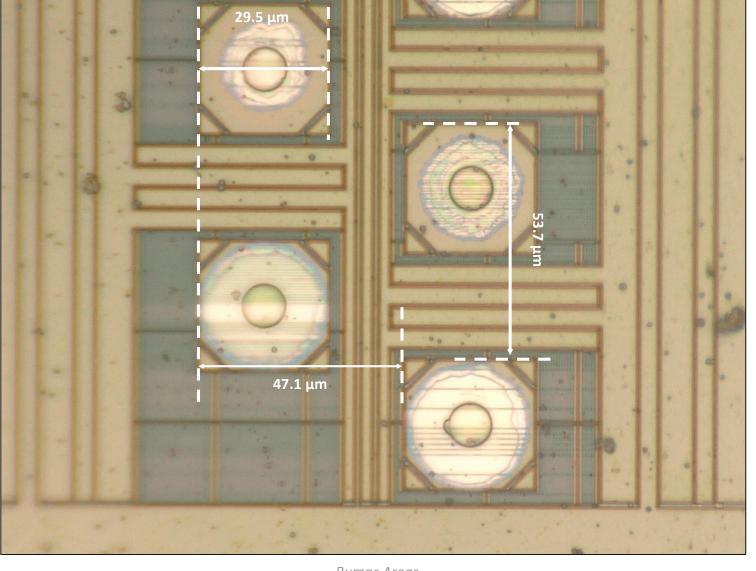
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Die Overview ©2018 by System Plus Consulting

μBump pitch: 47.1 μm

μBump diameter: 29.5 μm

Samsung 1GB HBM2 – DRAM Die View and Dimensions

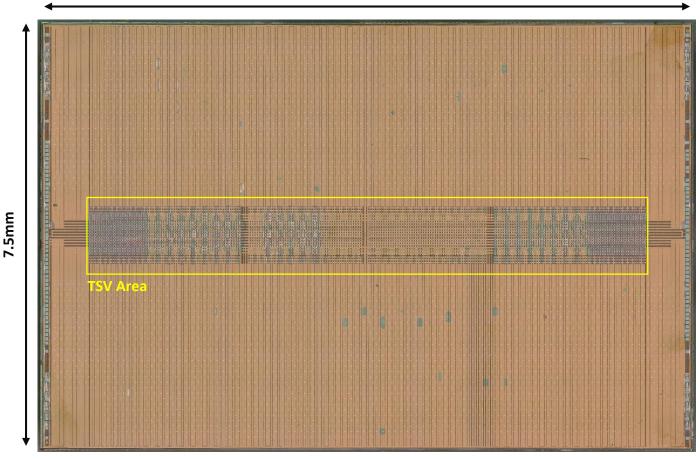
11.5mm

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Die Overview ©2018 by System Plus Consulting

86mm² Die Area:

(11.5x7.5mm)

Nb of PGDW per 12-inch wafer: 728

Pad number: 126

TSV number: 4,830

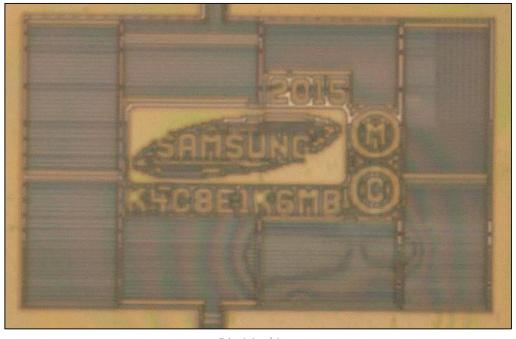
Samsung 1GB HBM2 – DRAM Die Marking

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Die Marking ©2018 by System Plus Consulting

The die marking includes the logo of Samsung and:

K4C8E1K6MB

2015

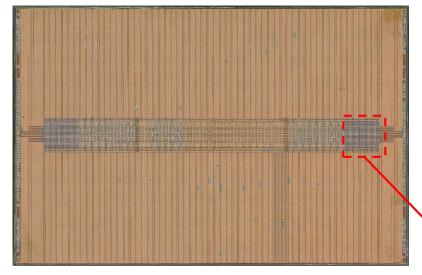
Samsung 1GB HBM2 – DRAM Die – μBumps & TSVs

Overview / Introduction

Company Profile & Supply Chain

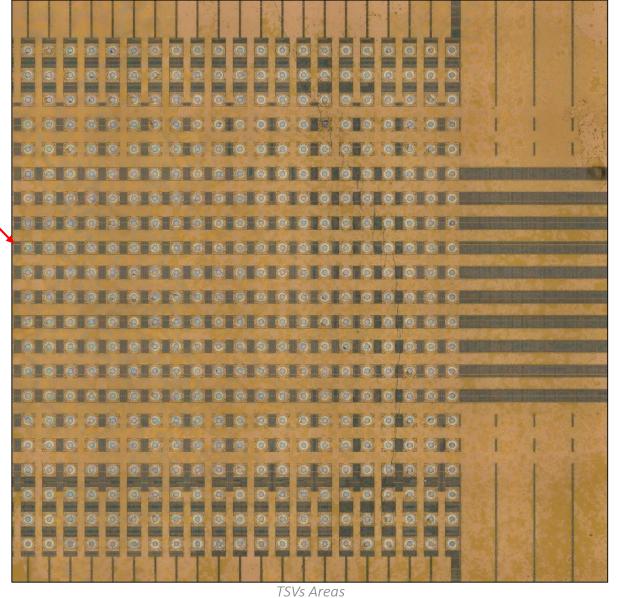
Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

About System Plus

Die Overview

• TSVs are located at the center of the dies.

©2018 by System Plus Consulting

Samsung 1GB HBM2 – DRAM Die – μBumps & TSVs

Overview / Introduction

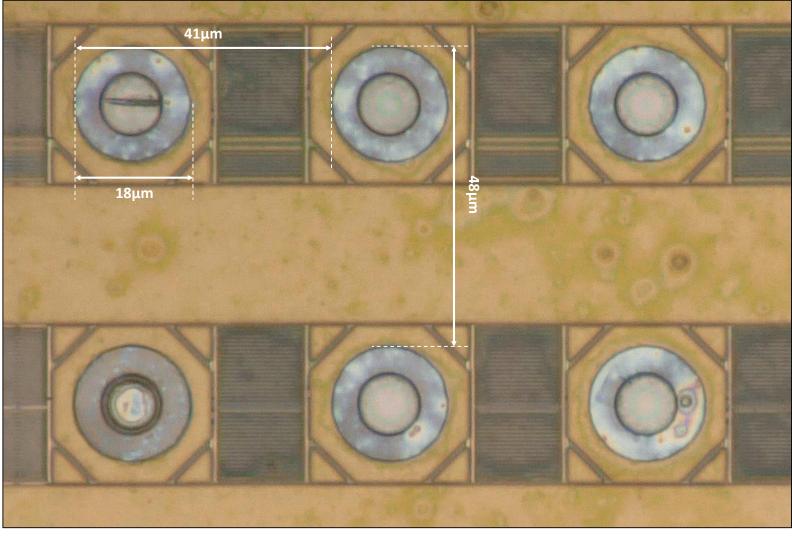
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

μBump & TSV pitch: 41μm

μBump diameter: 18μm

TSVs Areas ©2018 by System Plus Consulting

Overview / Introduction

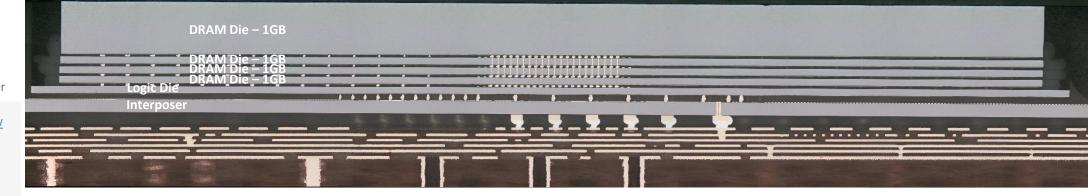
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Package Cross-Section – HBM2 Stack

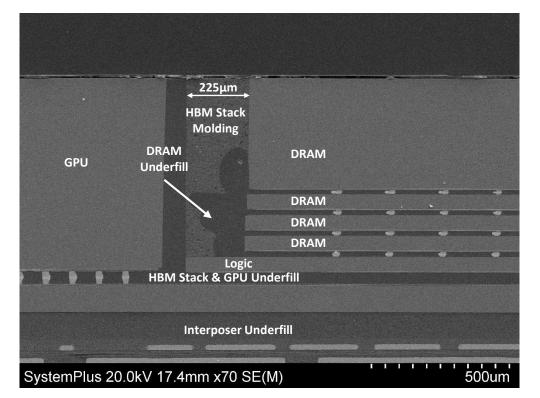
- HBM stacks are flip-chipped on the interposer at the wafer-level though microbumps.
- HBM stacks include 5 dies: 4 1GB DRAM + 1 logic (buffer) die

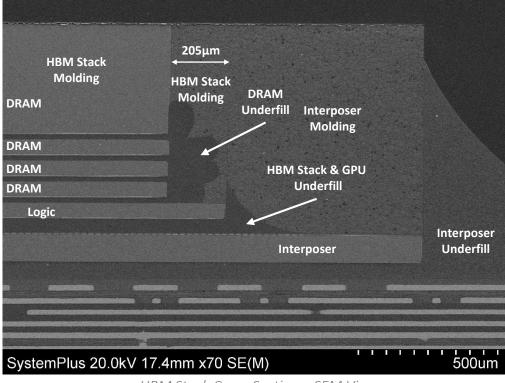
HBM Stack Cross-Section – Optical View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

HBM Stack Cross-Section - SEM View ©2018 by System Plus Consulting

- The HBM stack is molded on the side.
- The side mold is 205-225µm wide.
- DRAM dies do not share exactly the same size, they are diced before being bonded together.

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

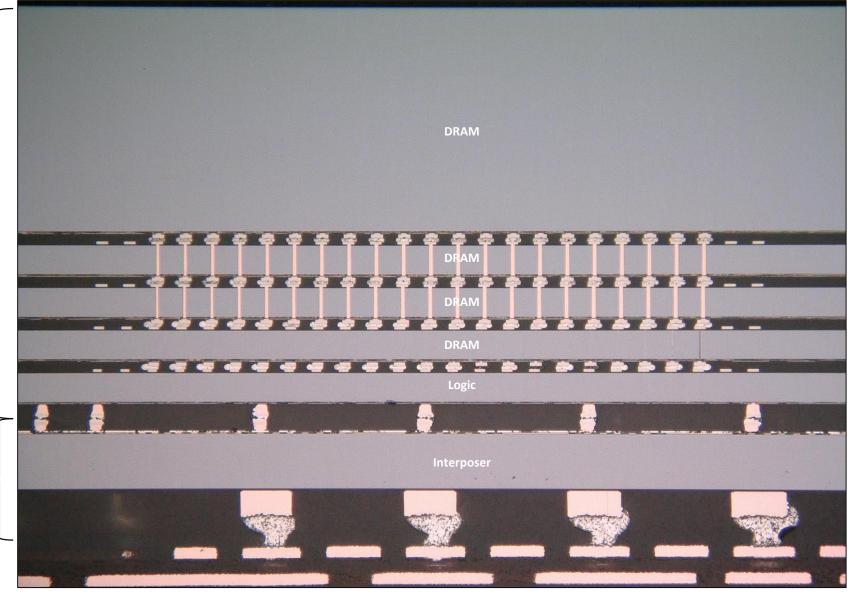
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

HBM Stack

4x DRAM Die + 1x Logic Die TSV and microbumps connection

Interposer

TSV, redistribution layers and microbumps connections

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

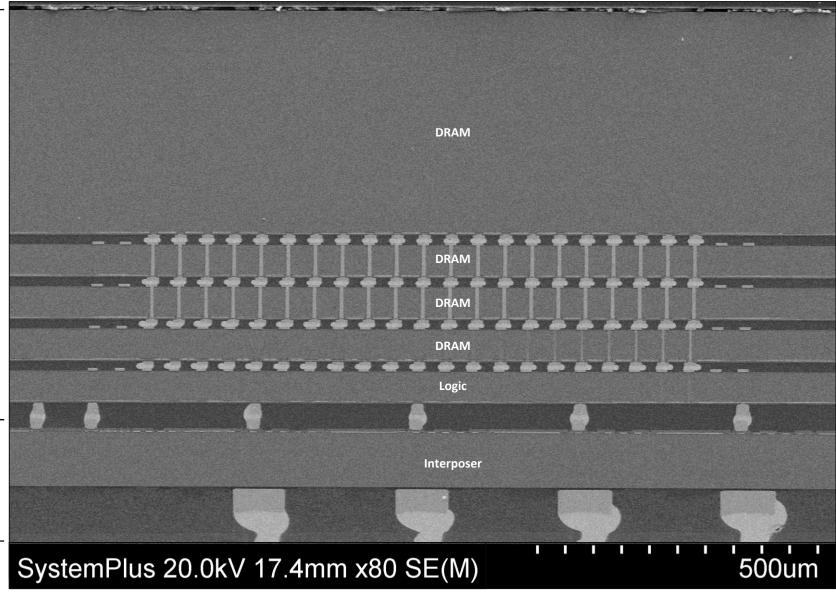
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

HBM Stack

4x DRAM Die + 1x Logic Die TSV and microbumps connection

Interposer

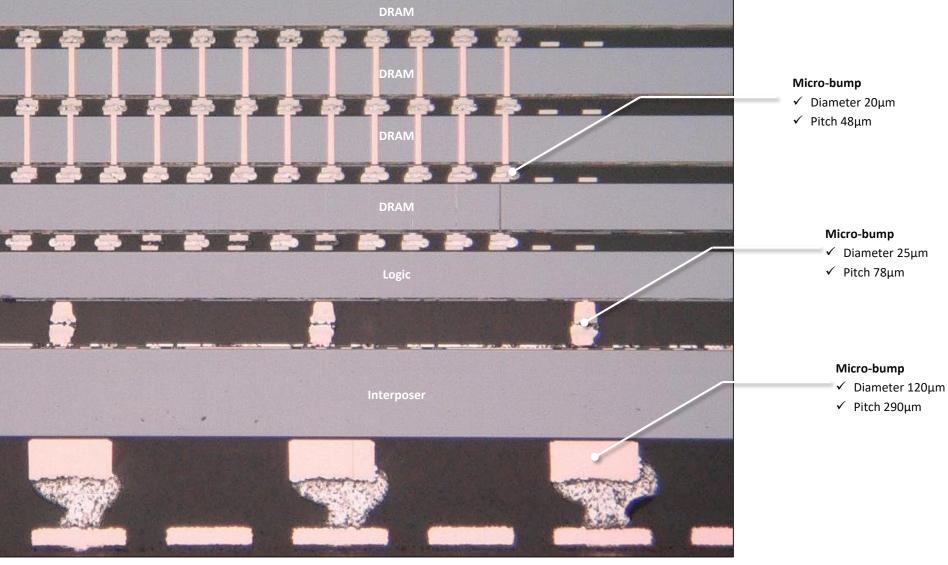
TSV, redistribution layers and microbumps connections

HBM Stack Cross-Section - SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

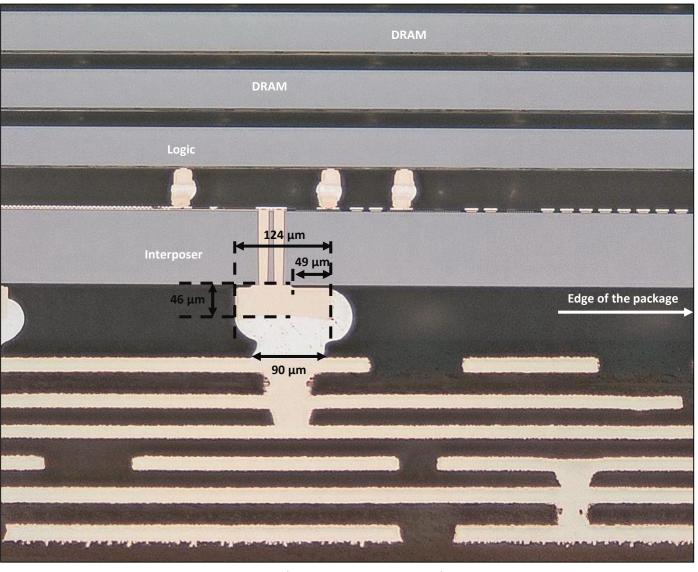
HBM Stack Cross-Section – Optical View ©2018 by System Plus Consulting

Package Cross-Section — Substrate — Interposer

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

- Under the HBM memory, the bump are larger than under the GPU.
- We assume that the bumps are tweaks to help manage the warpage.
- The bump and the polyimide extends 25 µm in the edge direction.

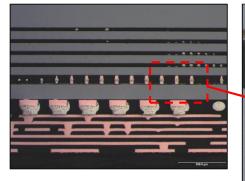
HBM Stack Cross-Section – Optical View ©2018 by System Plus Consulting

Package Cross-Section – Interposer – HBM2 Stack

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

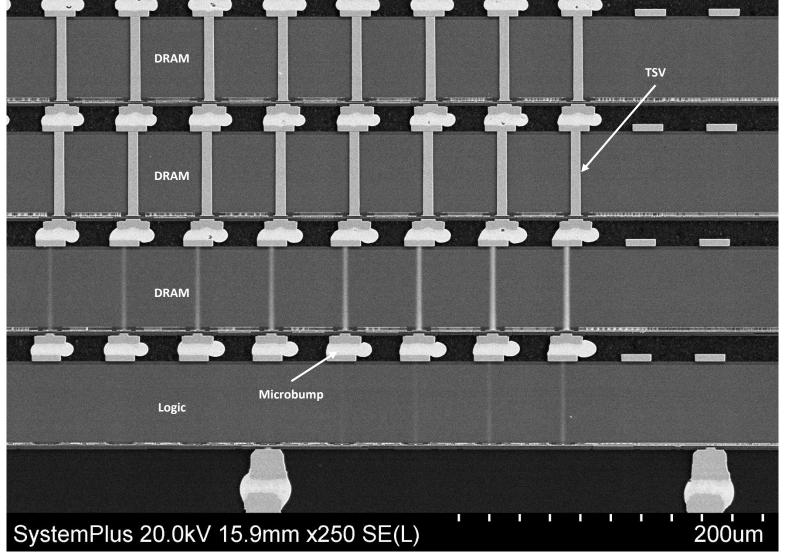
Feedback

DRAM

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

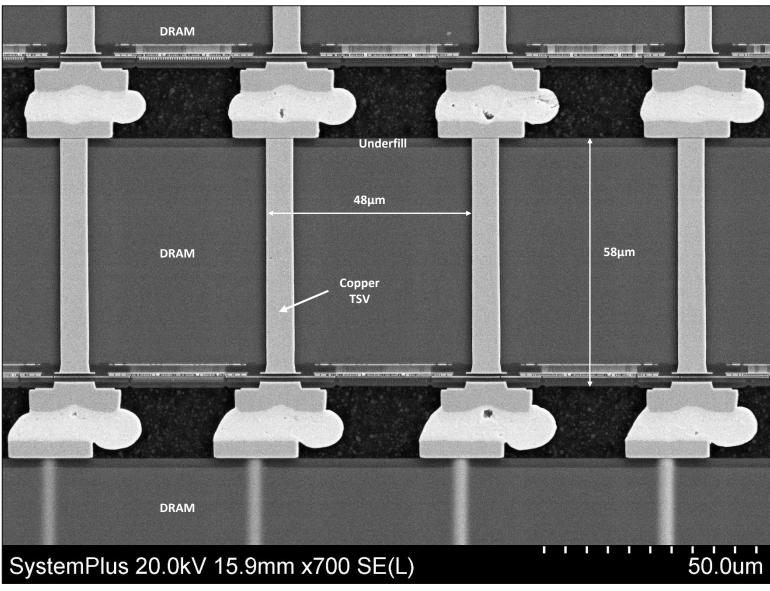
Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

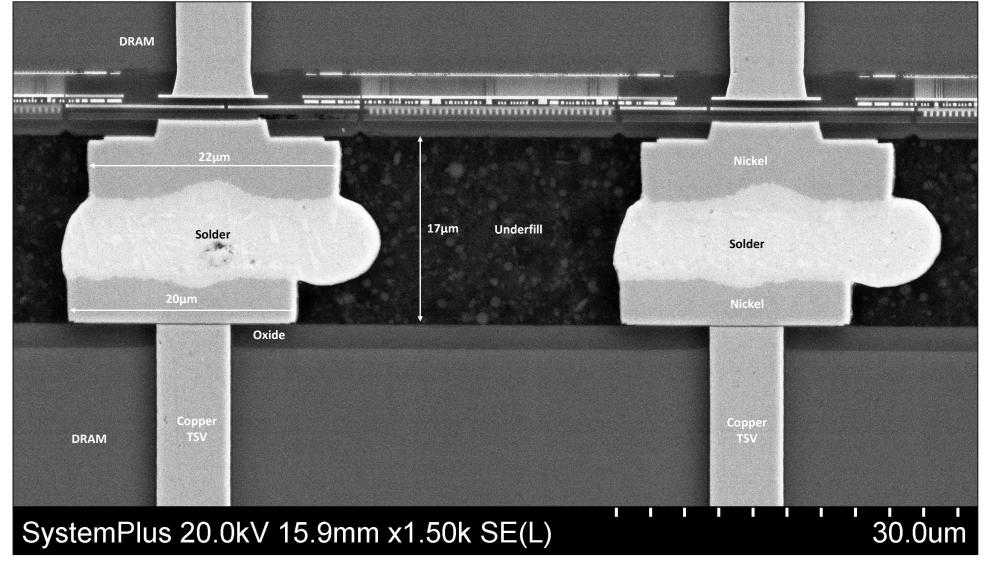
Feedback

- HBM dies thickness (excepted top die): 56µm
- HBM stack TSV & microbumps pitch: 48µm
- Underfill thickness: 17μm

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

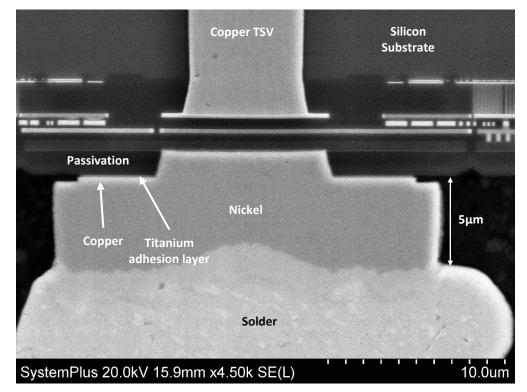
Selling Price Analysis

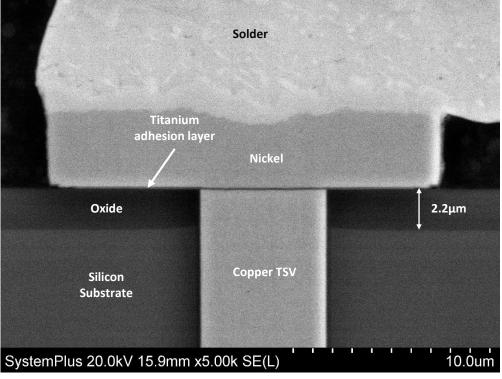
Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

HBM Stack Cross-Section – SEM View ©2018 by System Plus Consulting

HBM Stack Cross-Section – SEM View ©2018 by System Plus Consulting

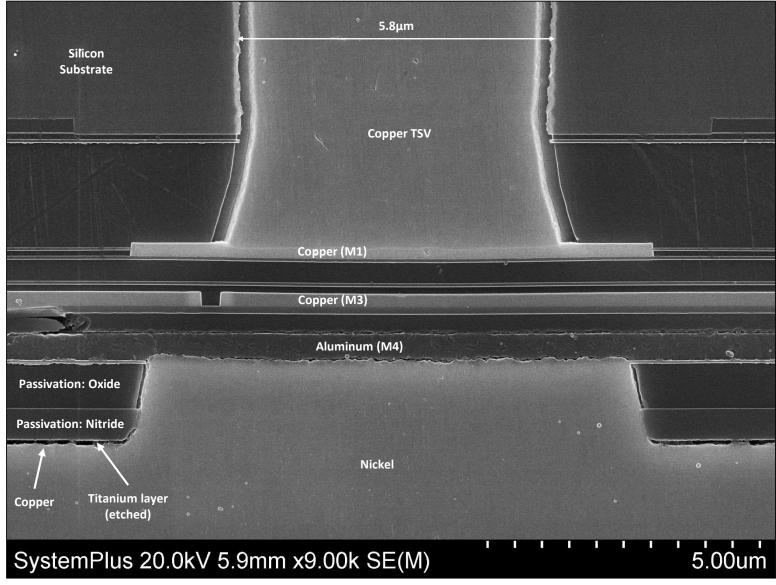
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

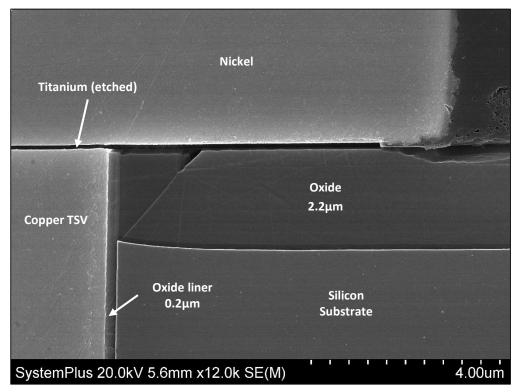
HBM Stack Cross-Section – SEM View ©2018 by System Plus Consulting

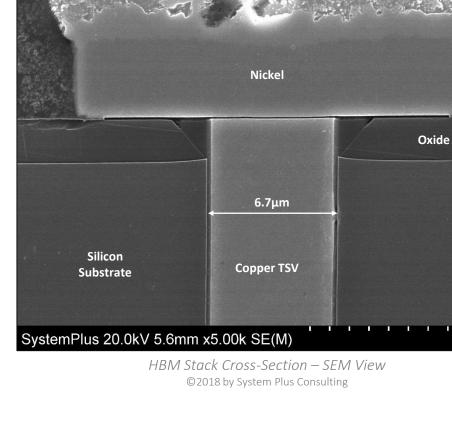
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- ► Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

10.0um

NVIDIA GV100 – GPU Die View and Dimensions

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

25.65 mm

828.5 mm² Die Area: (32.3 x 25.7 mm)

Nb of PGDW per 12-inch wafer: 64

GPU-HBM Bumps Area: 4 x 7.32 mm²

(6.10 x 1.20 mm)

GPU-HBM Bumps Number: 2,352

GPU-HBM Bumps Fill Factor: 3.5 %

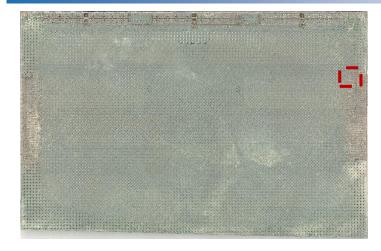
NVIDIA GV100 – GPU Die Bumps

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

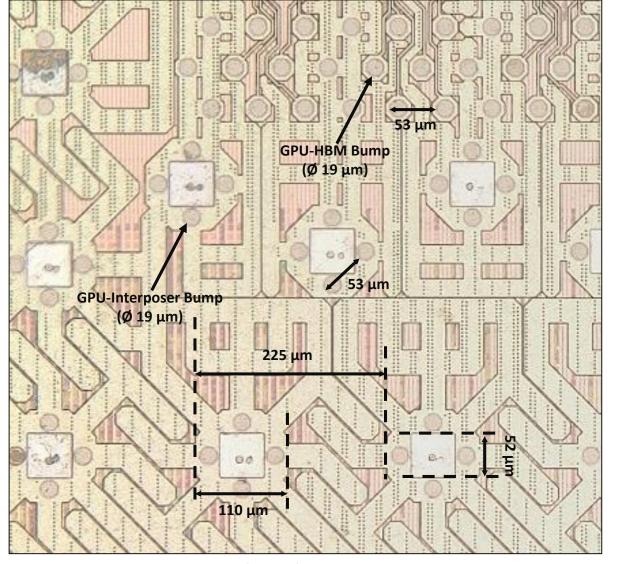

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus


Die Overview ©2018 by System Plus Consulting

GPU-HBM bumps are located at four sites on the die.

53 μm Bump pitch:

Bump diameter: 19 μm

For the probe testing, each Al pad are opened.

Die Top View – Bumps ©2018 by System Plus Consulting

Overview / Introduction

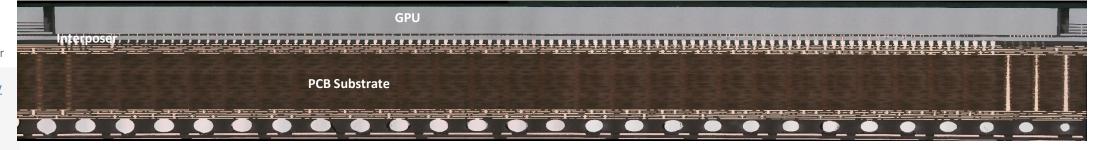
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Package Cross-Section – GPU

The GPU die is flip-chipped on the interposer at the wafer-level though microbumps.

GPU Cross-Section – Optical View ©2018 by System Plus Consulting

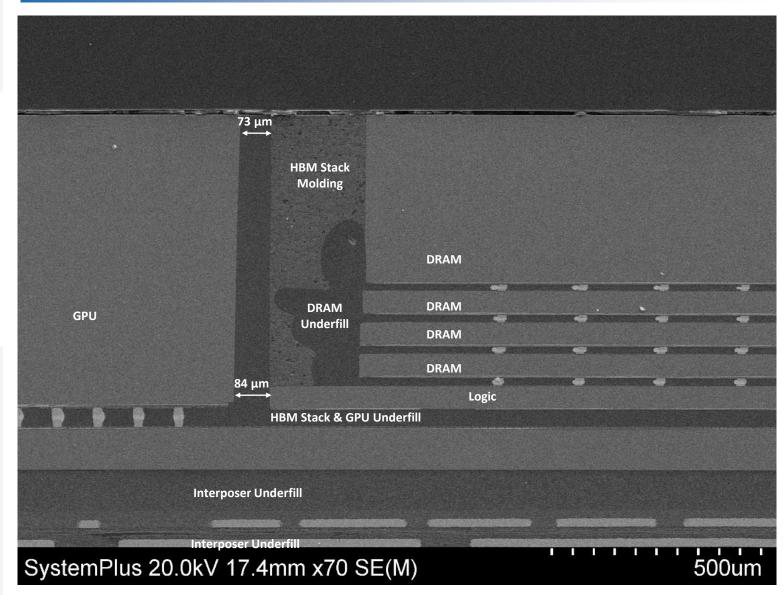
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Package Cross-Section — GPU

- The GPU and the HBM stack package are placed side by side in an underfill.
- The space between the dies are $70 - 80 \mu m$ wide.

Package Cross-Section – GPU

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- ► Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

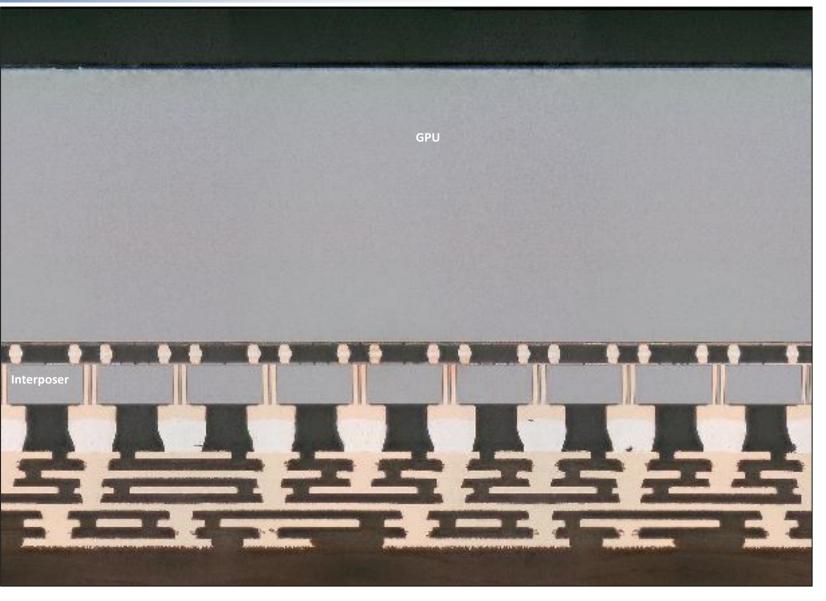
Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus


GPU

1x GPU Die __

TSV and microbumps connection

Interposer

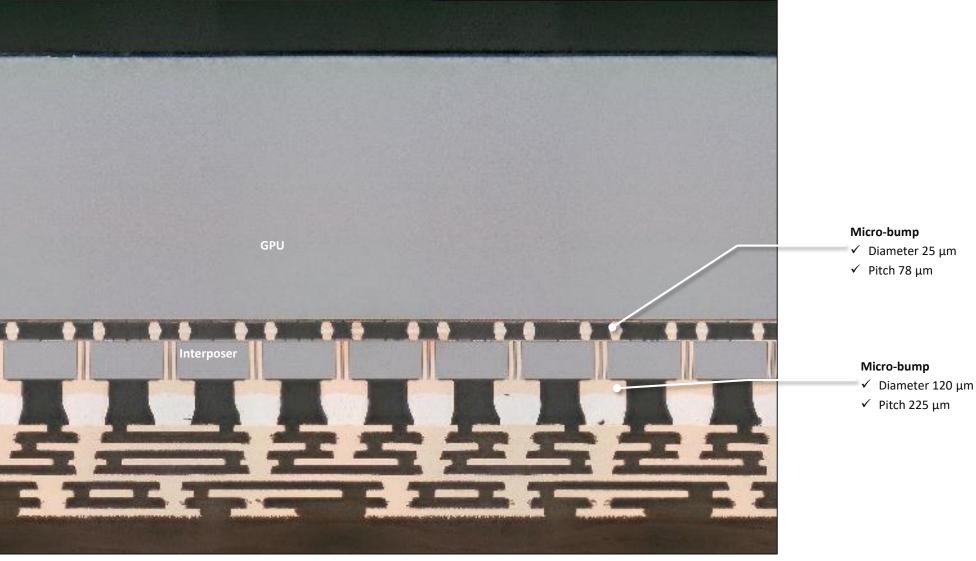
TSV, redistribution layers and microbumps connections

Package Cross-Section – GPU

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- ► Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

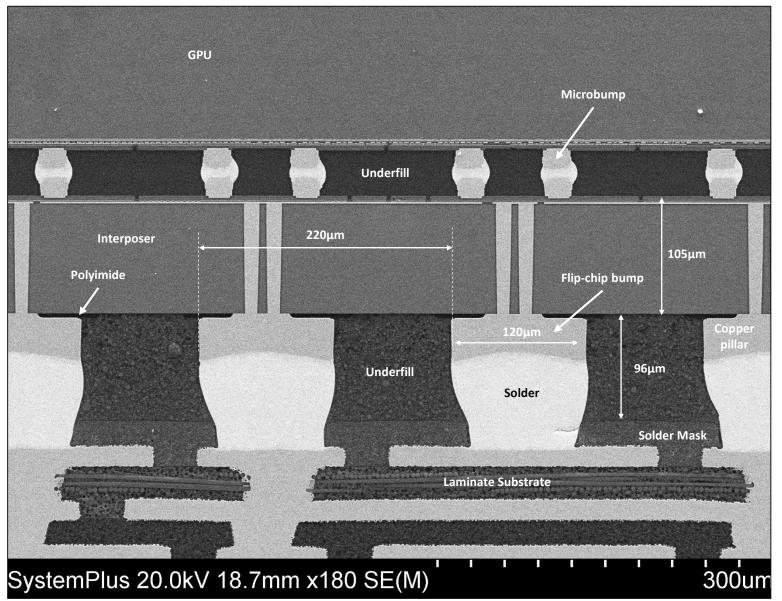
GPU Cross-Section – Optical View ©2018 by System Plus Consulting

Package Cross-Section — Substrate — Interposer

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

Overview / Introduction

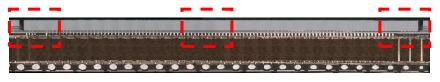
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

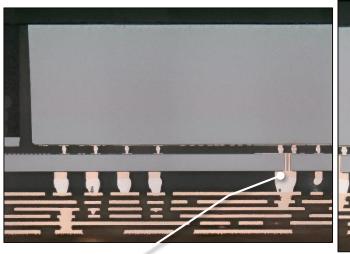
Manufacturing Process Flow

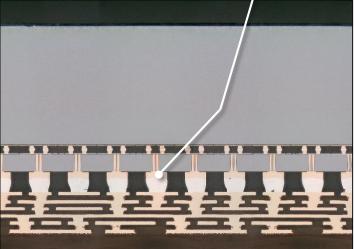
Cost Analysis

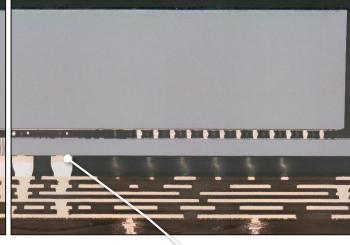

Selling Price Analysis

Feedback

About System Plus


Package Cross-Section — Substrate — Interposer




Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Micro-bump

- ✓ Diameter 120 µm
- ✓ Pitch 225 µm
- ✓ Left Width 41 µm
- ✓ Right Width 31 µm

Micro-bump

- ✓ Diameter 120 µm
- ✓ Pitch 225 µm
- ✓ Left Width 24 µm
- ✓ Right Width 49 µm

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Micro-bump

- ✓ Diameter 120 µm
- ✓ Pitch 225 µm
- ✓ Left Width 50 µm
- ✓ Right Width 28 µm

- Under the GPU, three type of bumps are used.
- The bumps could be regrouped into two group: One in stress region and one in High power region.
- In the stress region, depending on the position of the edge, the bumps is extended in the edge direction.
- In the high power region, the bumps are smaller.
- We assume that the bumps are tweaks to help manage the warpage.

Package Cross-Section – Interposer – GPU

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

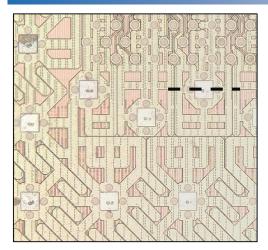
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

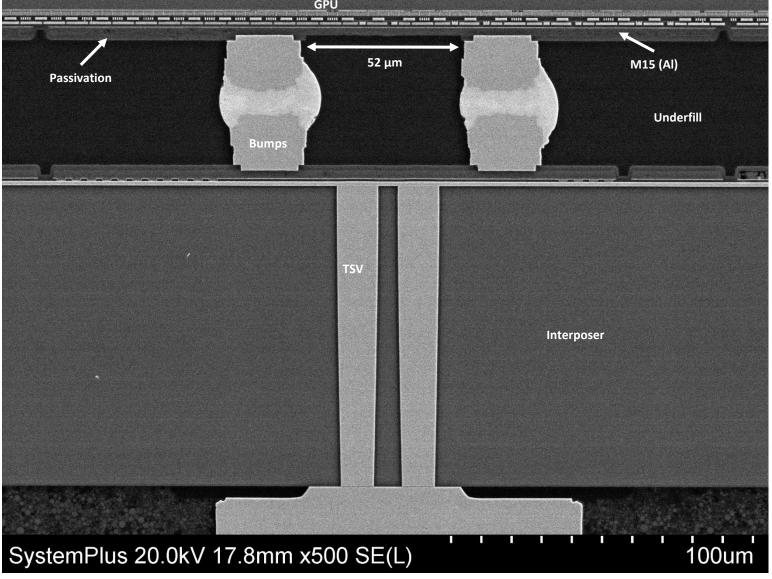
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Die Cross-Section –GPU

Die Top View – Bumps ©2018 by System Plus Consulting

The passivation on top of aluminum pads are opened to provide a spot to perform the wafer probe testing.

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

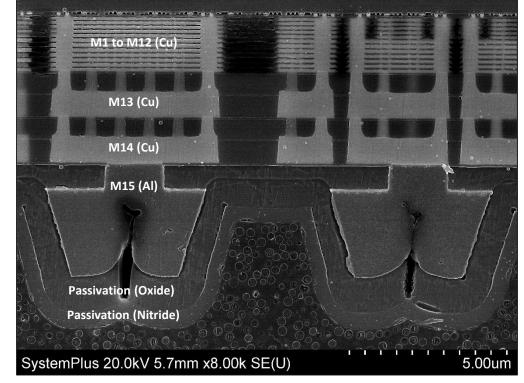
Die Cross-Section – GPU

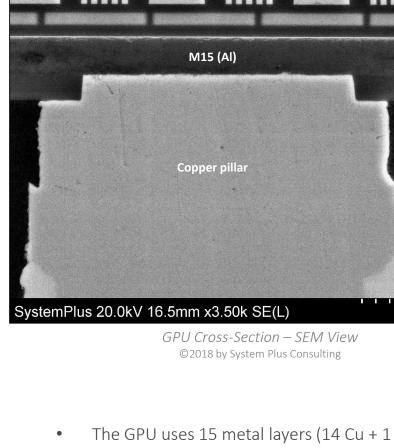
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

The GPU uses 15 metal layers (14 Cu + 1 Al)

GPU Cross-Section – SEM View ©2018 by System Plus Consulting

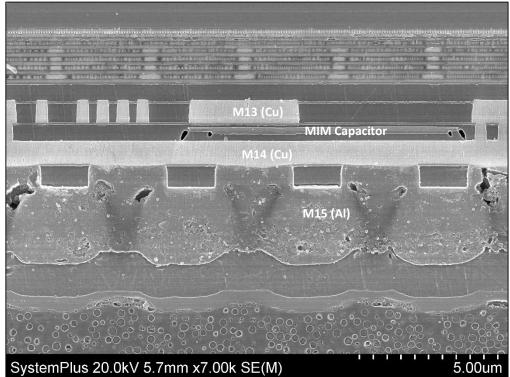
10.0um

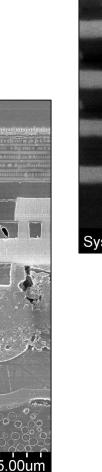
Die Cross-Section – GPU

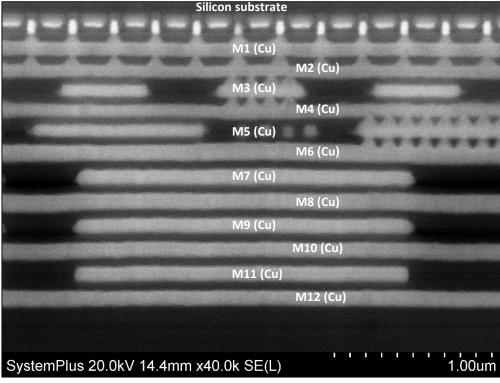
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

GPU Cross-Section – SEM View ©2018 by System Plus Consulting

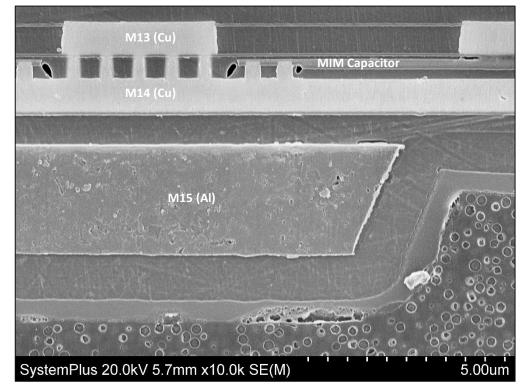
Die Cross-Section – GPU

Overview / Introduction

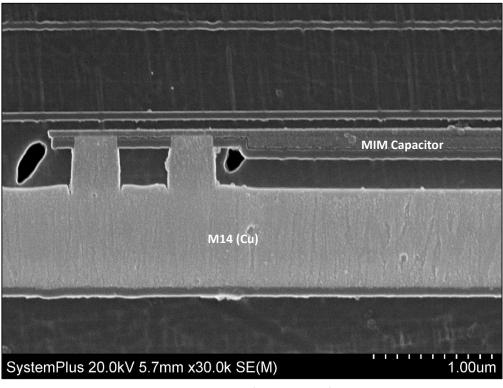
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

GPU Cross-Section – SEM View ©2018 by System Plus Consulting

MIM capacitors are present between M13 and M14.

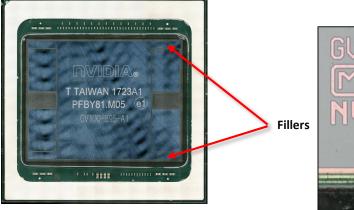
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

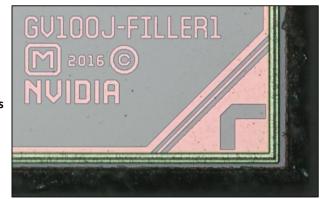

Cost Analysis

Selling Price Analysis

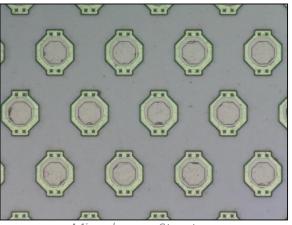
Feedback

About System Plus

Package Cross-Section – Filler

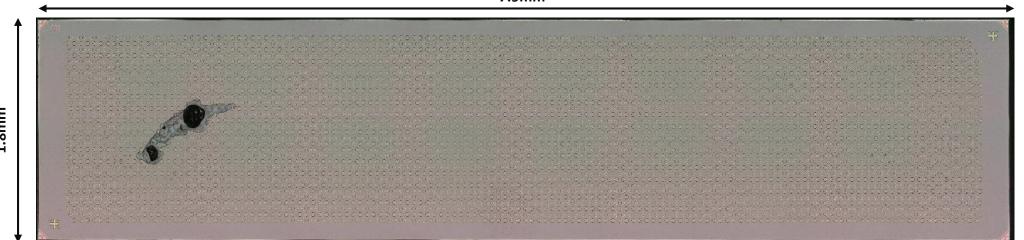


14.22mm²


(7.9x1.8mm)

Nb of PGDW per 12-inch wafer: 4,396

Die Area:



Die Marking ©2018 by System Plus Consulting

Micro bumps Structure ©2018 by System Plus Consulting

7.9mm

Die Overview ©2018 by System Plus Consulting

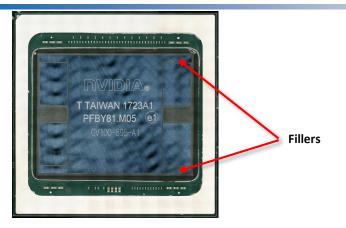
Overview / Introduction

Company Profile & Supply Chain

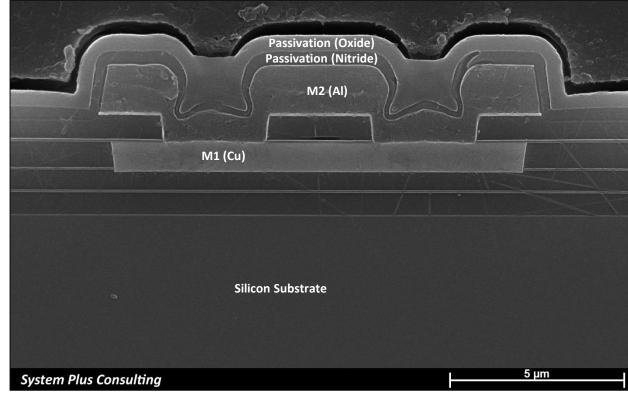
Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

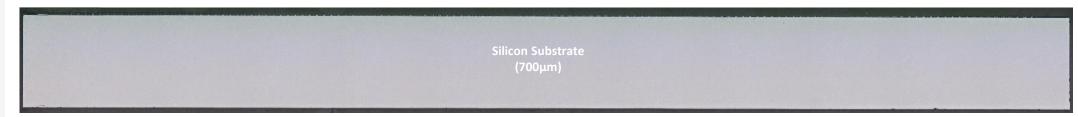
Manufacturing Process Flow


Cost Analysis

Selling Price Analysis


Feedback

About System Plus


Package Cross-Section – Filler Cross-Section

The fillers use 2 metal layers and micro bumps connections.

Filler Cross-Section – SEM View ©2018 by System Plus Consulting

NVIDIA GV100 – Interposer Die View and Dimensions

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

43.1 mm

1,452 mm² Die Area: (43.1 x 33.7 mm)

Nb of PGDW per 12-inch wafer: 36

GPU-HBM Bumps Area: 8 x 7.32 mm² (6.10 x 1.20 mm)

GPU-HBM Bumps Number: 2,352

GPU-HBM Bumps Fill Factor: 4.0 %

Die Overview ©2018 by System Plus Consulting

NVIDIA GV100 – Interposer Die Overview

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- Cross-Section Filler
- Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

43.1 mm

Reticle Stitching Location

- The die is about 1.5 times large than the full reticle size.
- The second generation of CoWoS process (CoWoS-2) use a two-mask stitching photolithography to fabricate such large interposer.
- In this way, TSMC is able to pack more transitors in a CoWoS package besides the device shrink by Moore's law.

Reticle Field Outline 25.66 x 33.7 mm

Die Overview ©2018 by System Plus Consulting

NVIDIA GV100 – Interposer Die Overview

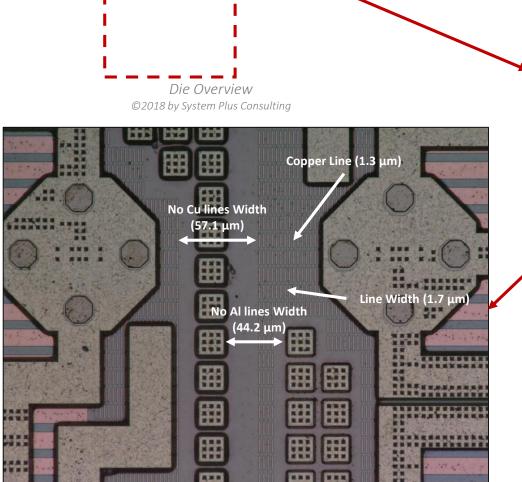
The state of the s

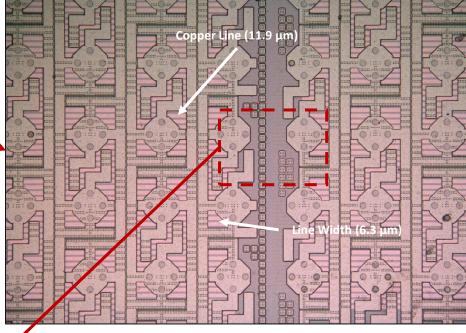
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Die Overview ©2018 by System Plus Consulting

No Copper or aluminum lines cross the reticle stitching area.

NVIDIA GV100 – Interposer Die Bumps

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Die Overview ©2018 by System Plus Consulting

The bridge bumps are misaligned between the GPU and the HBM.

Die Top View – Bumps ©2018 by System Plus Consulting

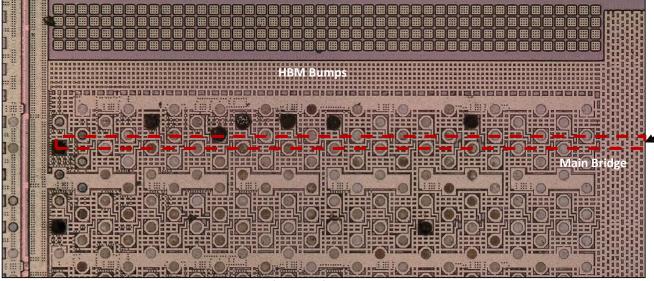
Company Profile & Supply Chain

Overview / Introduction

Physical Analysis

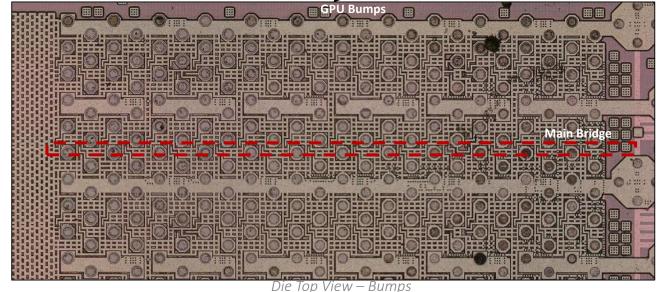
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- ▶ Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback


About System Plus

NVIDIA GV100 – Interposer Die Bumps

Die Top View – Bumps ©2018 by System Plus Consulting

Die Top View – Bumps ©2018 by System Plus Consulting

©2018 by System Plus Consulting

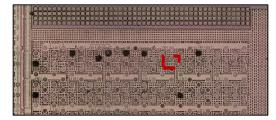
NVIDIA GV100 – Interposer Die Bumps

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

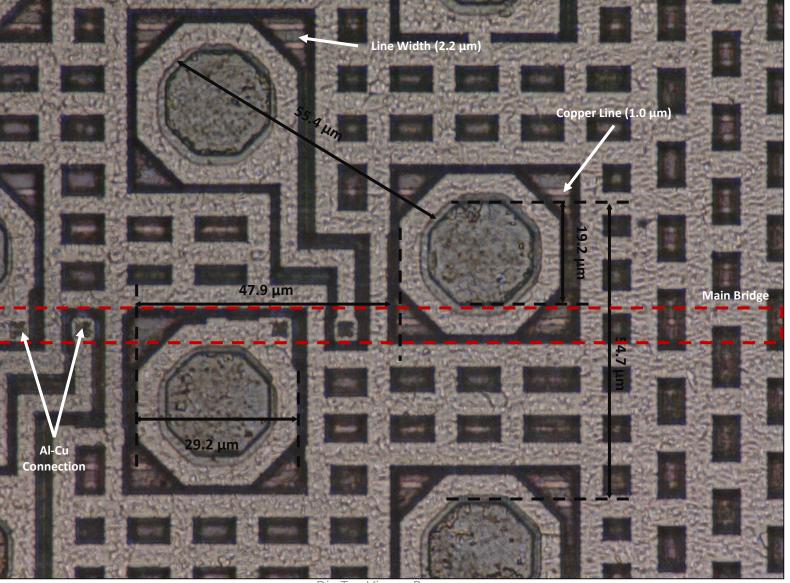
- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- ▶ Interposer Die
- o Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


About System Plus

Die Top View – Bumps ©2018 by System Plus Consulting

Bump pitch: 55 μm

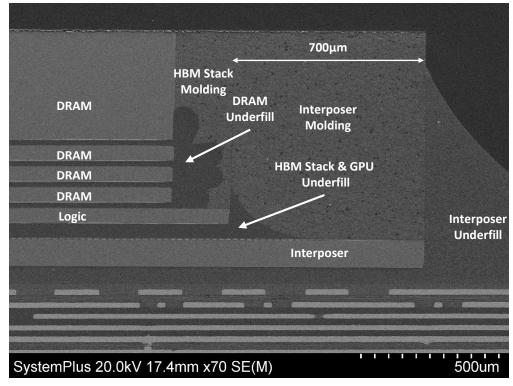
Bump diameter: 19 μm

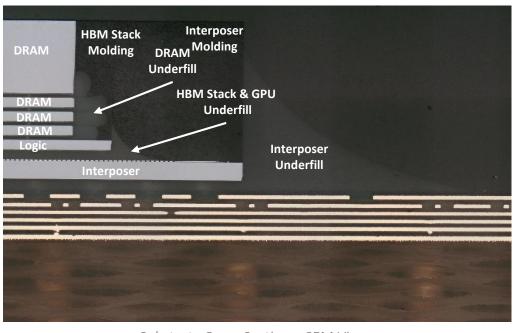
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

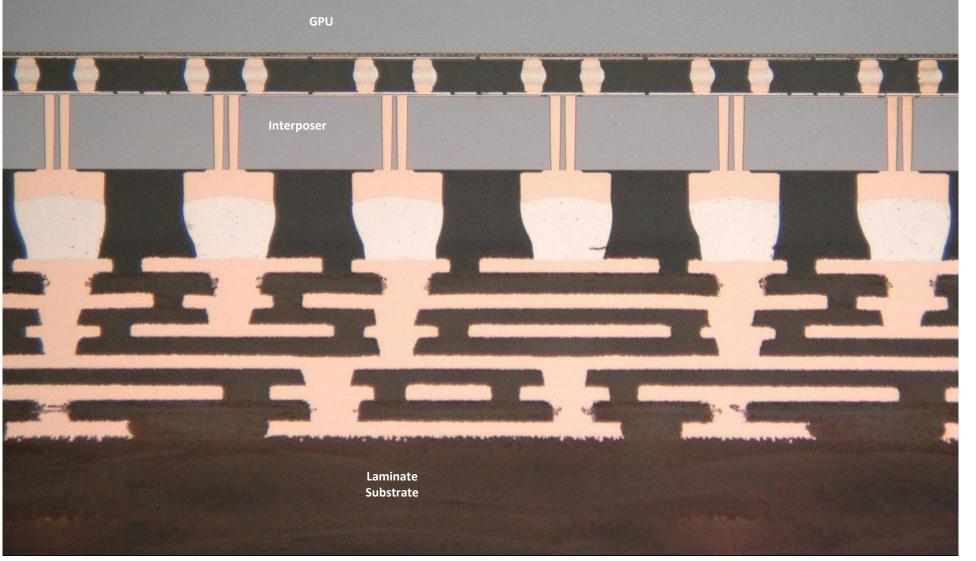
- The interposer with GPU and HBM Stacks is molded and grinded.
- 3 different underfills are used:
 - Under the interposer
 - Under GPU & HBM stack
 - Under the DRAM dies in the HBM stack.

Substrate Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

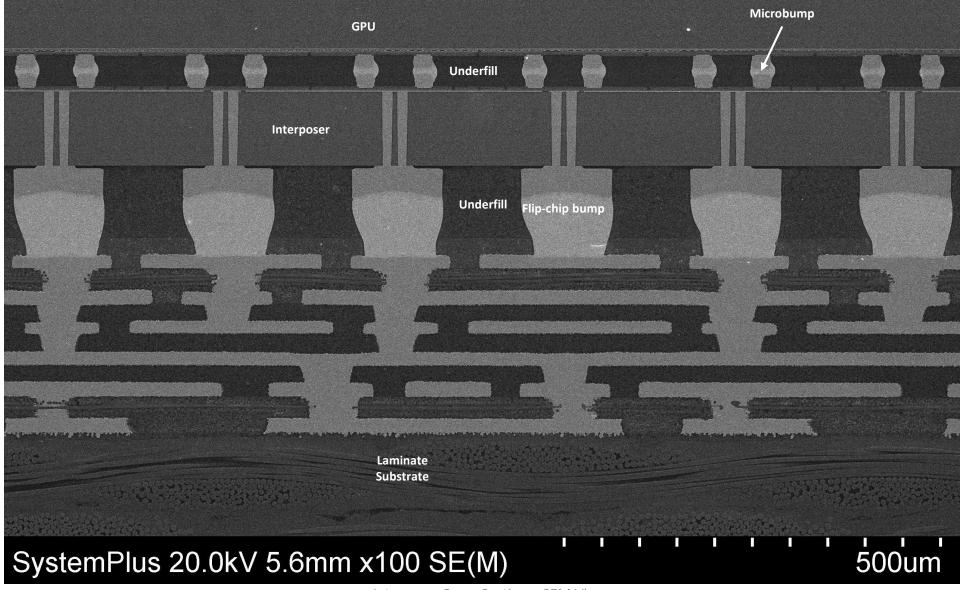
Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

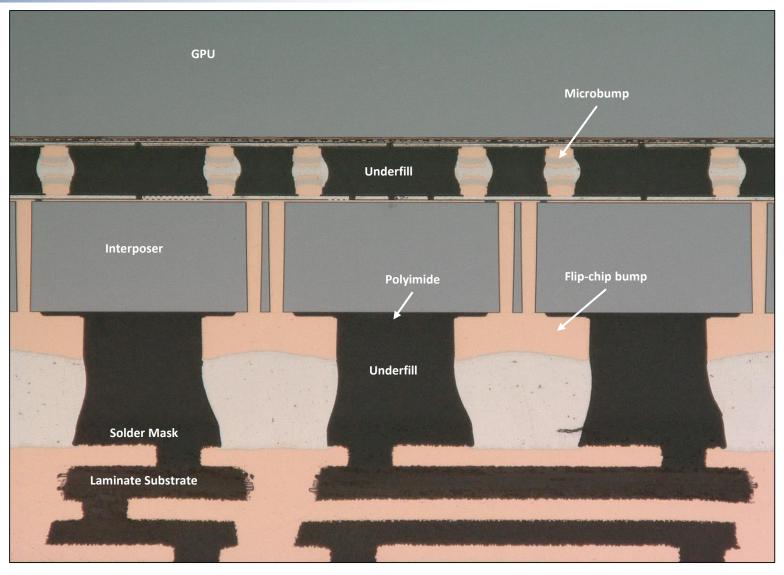
Selling Price Analysis

Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

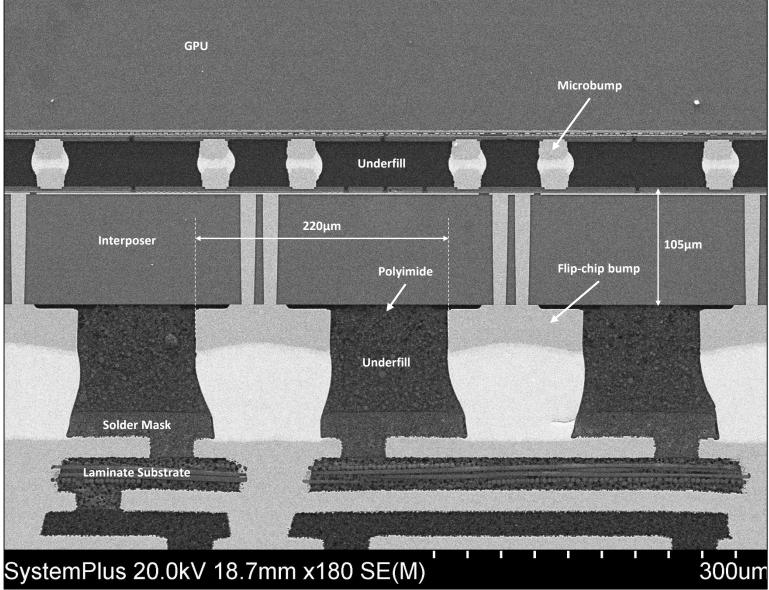
Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

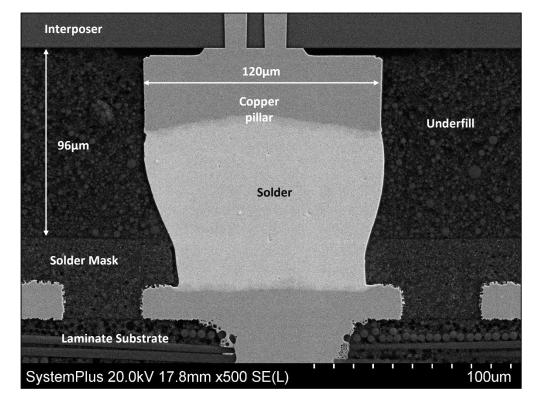
Feedback

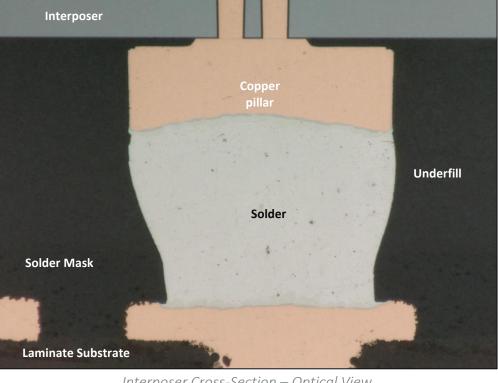
- Interposer thickness: 105µm
- Interposer bump pitch: 220µm

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ▶ Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

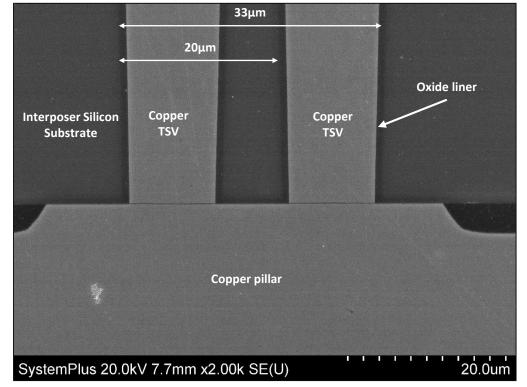
Interposer Cross-Section – Optical View ©2018 by System Plus Consulting

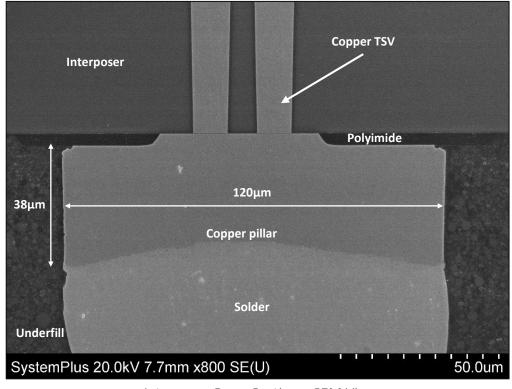
- Interposer copper pillar diameter: 120µm
- Underfill thickness: 96µm

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ▶ Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

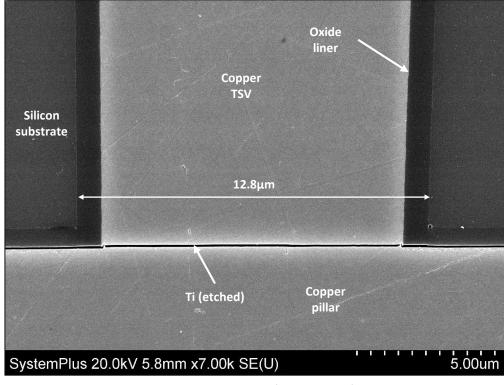
Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ▶ Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

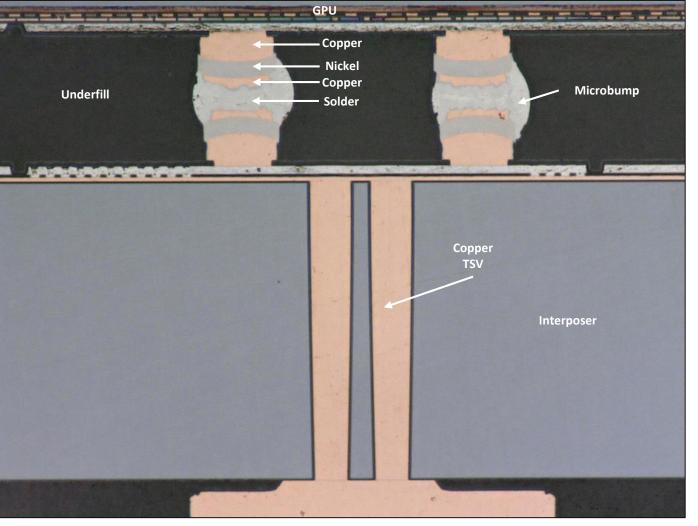
Feedback

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

Interposer Cross-Section – Optical View ©2018 by System Plus Consulting

Overview / Introduction

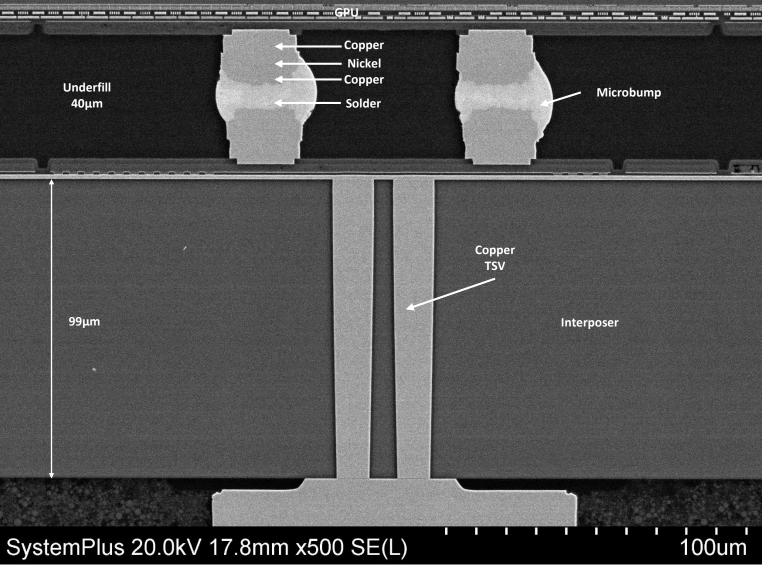
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ► Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Interposer substrate thickness: 99μm

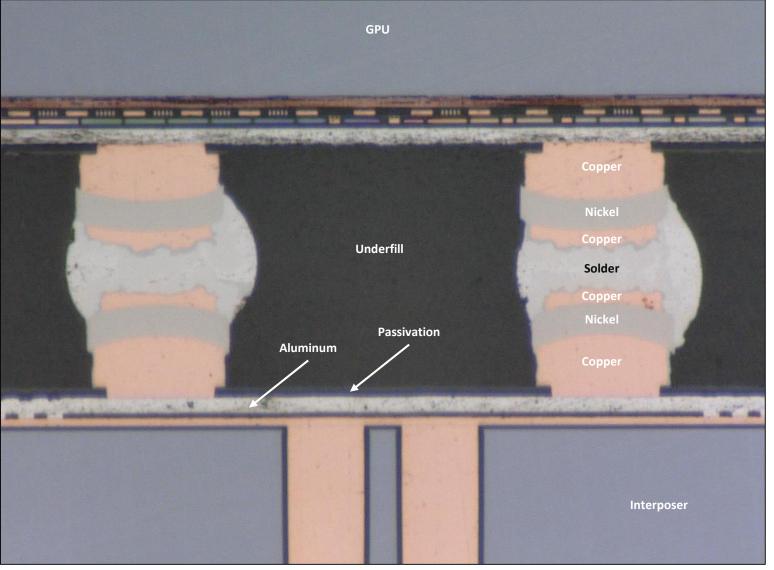
Underfill thickness: 40µm

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- o DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

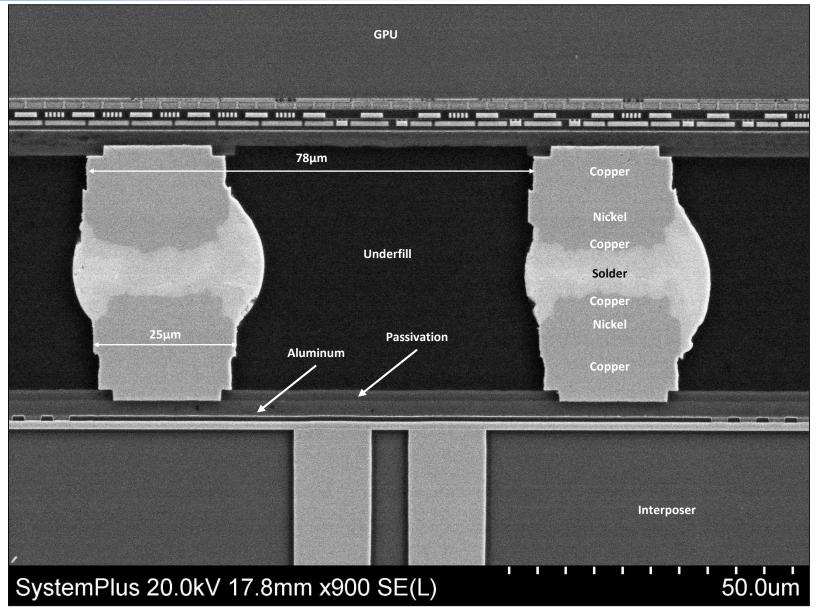
Interposer Cross-Section – Optical View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- o Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

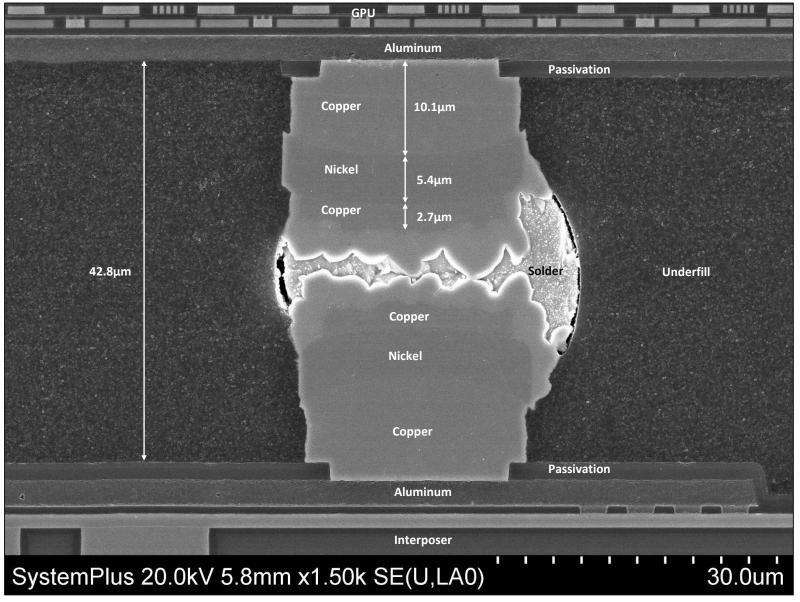
Feedback

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ▶ Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

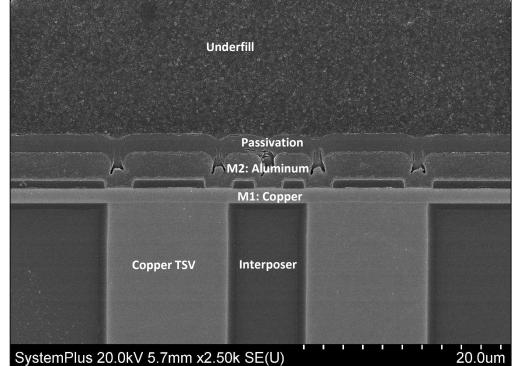
Feedback

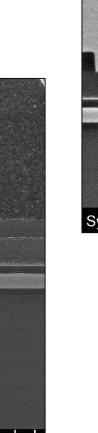
Overview / Introduction

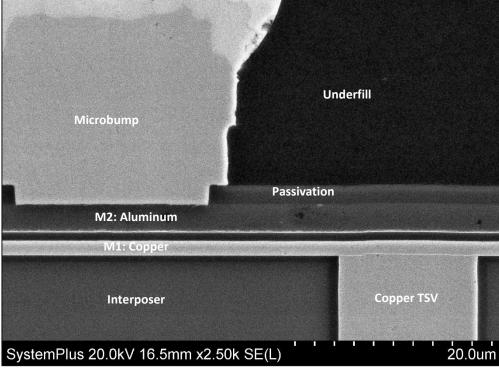
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ► Cross-Section Interposer


Manufacturing Process Flow


Cost Analysis


Selling Price Analysis

Feedback

About System Plus

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

The interposer uses two redistribution metal layers, one in copper and one in aluminum

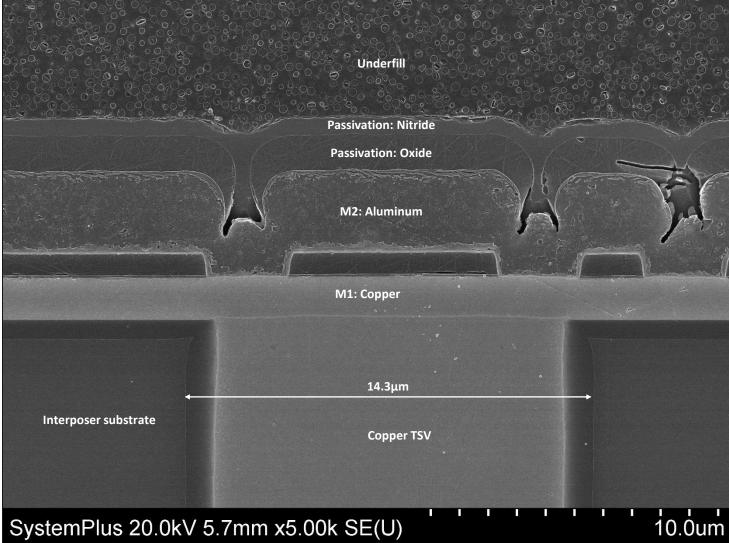
Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ▶ Cross-Section Interposer


Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

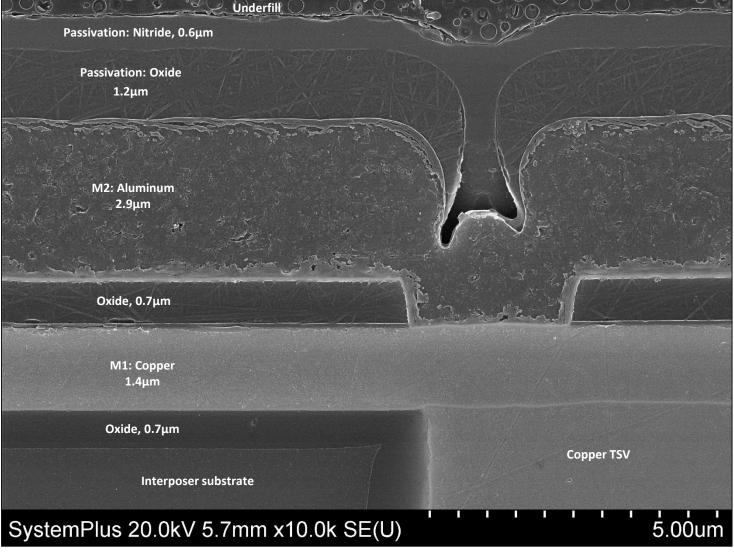
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card Teardown
- o Package
- o Dies Size
- o Package Opening
- Substrate Cross-Section
- DRAM Dies
- o Cross-Section HBM Stack
- GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ► Cross-Section Interposer

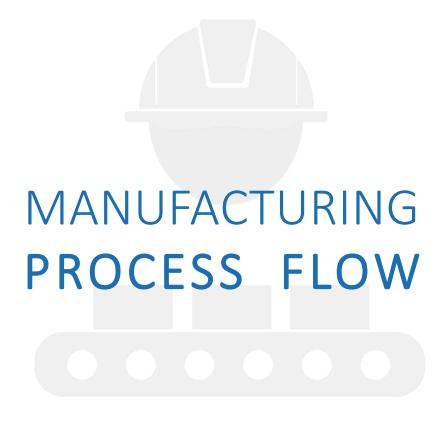
Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus


- RDL Cu layer thickness: 1.4µm
- RDL Al layer thickness: 2.9µm

Interposer Cross-Section – SEM View ©2018 by System Plus Consulting

Overview / Introduction

Company Profile & Supply Chain

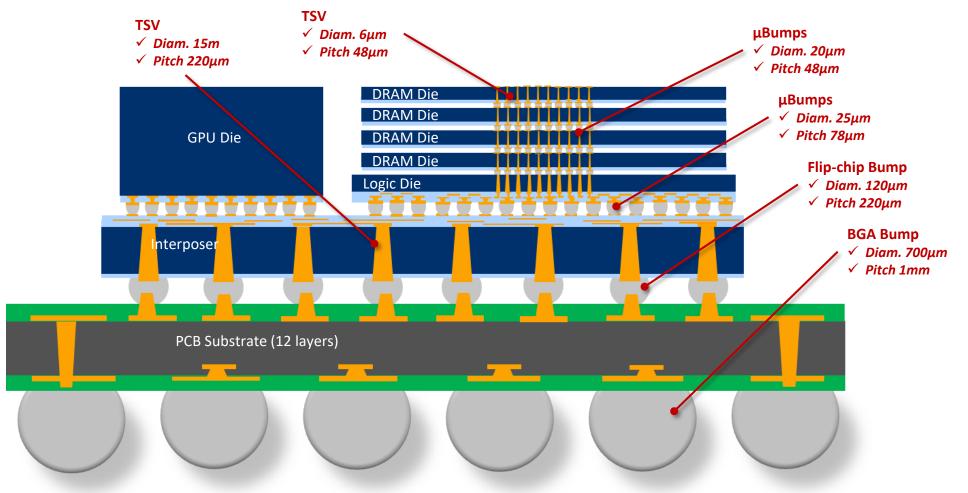
Physical Analysis

Manufacturing Process Flow

- Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis


Feedback

About System Plus

Global Overview

Package Structure:

- O 3D Packaging: 5 stacked dies with TSV & μBumps (HBM stack).
- 2.5D Packaging: HBM stack and GPU stacked with µBumps and a silicon interposer holding TSV.
- Flip-chip BGA: silicon interposer flip-chipped to a 12-layers PCB substrate

Global Overview

TSMC CoWoS Process Steps:

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Interposer Process HBM Stack Pick & • TSV **GPU Pick & Place** Solder Reflow Place • BEOL Metals Microbumping CoW -Interposer backside processing **Underfill Deposition** Carrier Bonding **Mold Thinning** Wafer Molding & Cure • Thinning & Via Reveal Bumping

• Debonding & Dicing

Underfill Deposition & Cure

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

GPU Process

GPU Front-End Process:

300mm Silicon wafer Substrate:

CMOS (Logic, Analog, Memory) Process type:

Metal layers: 15 (14 Cu + 1 Al)

Process: **FinFET**

Technology node: 12nm

GPU Area: 828mm²

Test:

Test type: Wafer sort (probe test)

Note: The process flow of this technology is standard. The above parameters are enough to estimate the manufacturing cost of the die.

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- ▶ GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

GPU Wafer Fabrication Unit

We assume that the manufacturing of the GPU is made by TSMC on 300mm wafers.

Wafer fab unit:

TSMC Fab 12 phase 6 Name:

Wafer diameter: 300mm (12-inch)

25,000 wafers / month Capacity:

Year of start: 2013

Products: Foundry

Hsinchu, Taiwan Location:

- This manufacturing line has been created in 2013.
 - We assume that both clean room and equipment are still in depreciation.

HBM – DRAM & Logic Dies Process

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- **HBM Process**
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

DRAM Front-Fnd Process:

300mm Silicon wafer Substrate:

DRAM Process type:

Metal layers: 4 (3 Cu + 1 Al)

Technology node: 20nm

DRAM Die Area: 86mm²

Logic Die Front-End Process:

300mm Silicon wafer Substrate:

Process type: **CMOS**

Metal layers: 4 (3 Cu + 1 Al)

Technology node: 20nm

Logic Die Area: 96mm²

Note: The process flow of these technology are standard. The above parameters are enough to estimate the manufacturing cost of the die.

Overview / Introduction

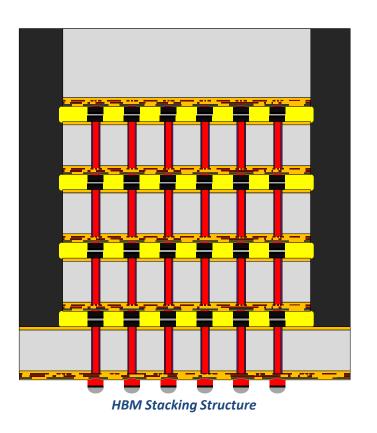
Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- **HBM Process**
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis


Selling Price Analysis

Feedback

About System Plus

HBM – TSV, Bumping & Stacking Process Flow

- TSV & Bumping Process:
 - Silicon 12-inch Substrate:
 - TSV filling: Bottom-up filling
 - Temporary bonding: TMAT process
 - Adhesive: Elastomer
 - Carrier: Silicon

Samsung HBM TSV Process (DRAM) Lithography Oxide Etch: RIE (2µm) Silicon Etch: DRIE (50µm depth, 6µm diam) PR Strip: Resist Strip Oxide Liner: PECVD (SiO2, 0.2µm) Barrier/Seed: PVD-Tantalum (Ta, 0.05µm) Barrier/Seed: PVD-Copper (Cu, 0.1µm) CU filling: Electroplating-Copper (Cu) TSV Anneal Cu & Ta CMP Samsung HBM Micro-Bumping Process (DRAM) UBM: PVD Titanium (Ti, 0.1µm) UBM: PVD Copper (Cu, 0.3µm) **UBM**: Lithography UBM: Electroplating-Nickel (Ni, 5µm) Bumping: Electroplating Solder (SnAg, 10µm) Bumping: Resist Strip Bumping: Wet Etching Copper Bumping: Wet Etching Titanium Temporary Bonding: Edge Trimming Temporary Bonding: Spin Coat Elastomer Temporary Bonding: bonding to carrier **Backside Thinning** TSV Via Reveal: Si etch TSV Via Reveal: PECVD Oxide (Passivation) TSV Via Reveal: CMP UBM: PVD Titanium (Ti, 0.1µm) **UBM**: Lithography **UBM**: Wet Etching Titanium

UBM: Resist Strip

Carrier debonding

UBM: Electroplating-Nickel (Ni, 4µm)

Vacuum Laminate NCF (Underfill)

Samsung HBM Micro-Bumping Process (Logic) UBM: PVD Titanium (Ti, 0.1μm) UBM: PVD Copper (Cu, 0.3µm) UBM: Lithography UBM: Electroplating-Copper (Cu, 17μm) UBM: Electroplating-Nickel (Ni, 3µm) Bumping: Electroplating Solder (SnAg, 10µm) Bumping: Resist Strip Bumping: Wet Etching Copper Bumping: Wet Etching Titanium Temporary Bonding : Edge Trimming ♣ Temporary Bonding: Spin Coat Elastomer Temporary Bonding: bonding to carrier **Backside Thinning** TSV Via Reveal: Si etch TSV Via Reveal: PECVD Oxide (Passivation) TSV Via Reveal: CMP UBM: PVD Titanium (Ti, 0.1µm) UBM: Lithography **UBM**: Wet Etching Titanium UBM: Resist Strip UBM: Electroplating-Nickel (Ni, 4µm) Samsung HBM Stacking Process DRAM Die 1 TC Bonding NCF Post Cure DRAM Die 2 TC Bonding NCF Post Cure DRAM Die 3 TC Bonding NCF Post Cure DRAM Die 4 TC Bonding NCF Post Cure Wafer Molding Carrier Debonding Dicing

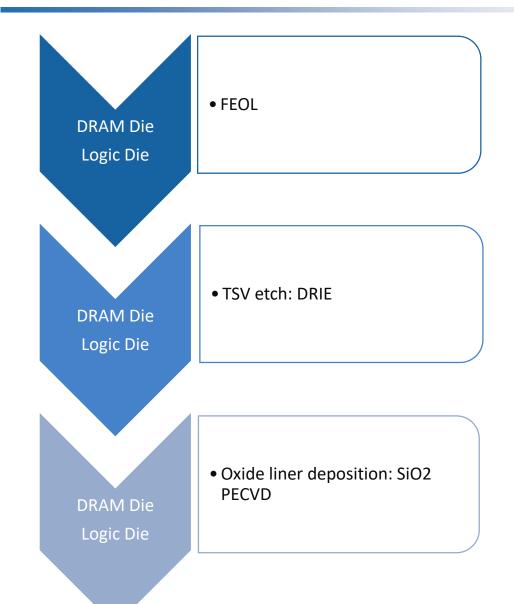
HBM - TSV Process Flow (1/2)

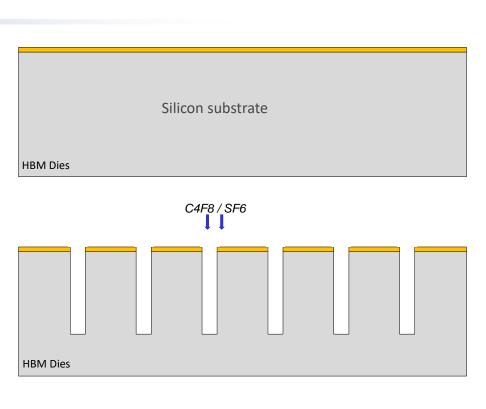
Overview / Introduction

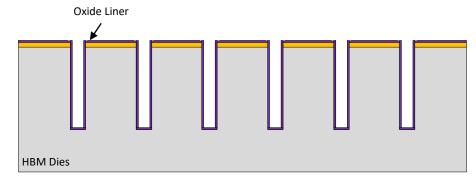
Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis


Selling Price Analysis

<u>Feedback</u>

About System Plus

drawing not to scale

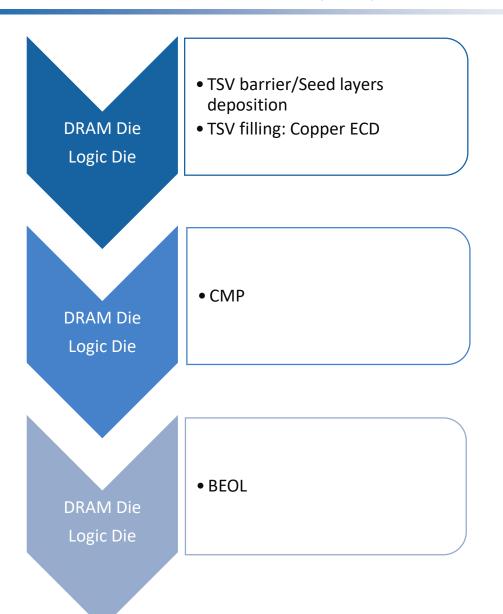
HBM - TSV Process Flow (2/2)

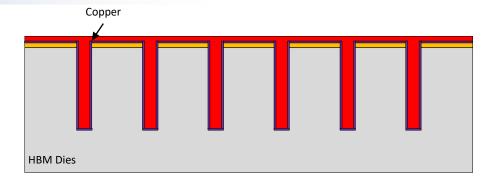
Overview / Introduction

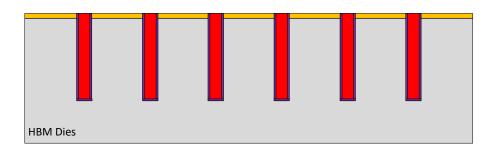
Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis


Selling Price Analysis


<u>Feedback</u>

About System Plus

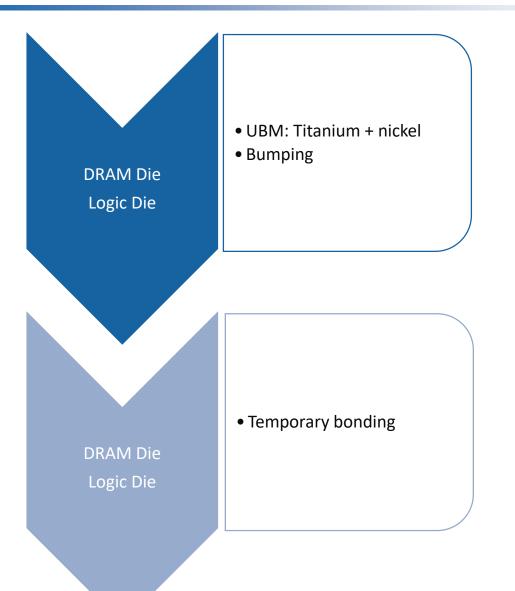
drawing not to scale

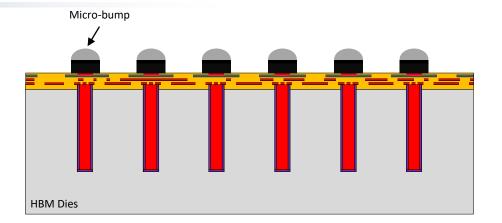
HBM – Micro-Bumping Process Flow (1/4)

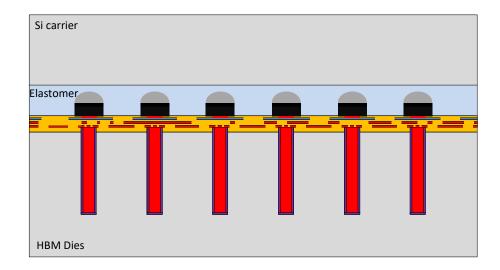
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

<u>Feedback</u>

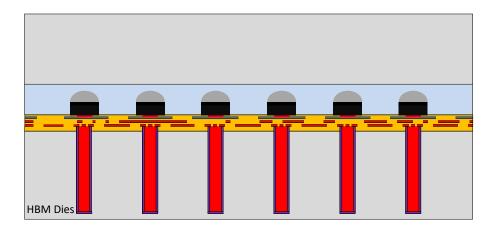
HBM – Micro-Bumping Process Flow (2/4)

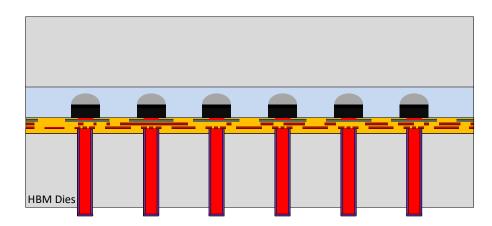
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

HBM – Micro-Bumping Process Flow (3/4)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

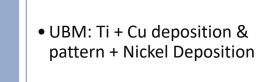
Manufacturing Process Flow

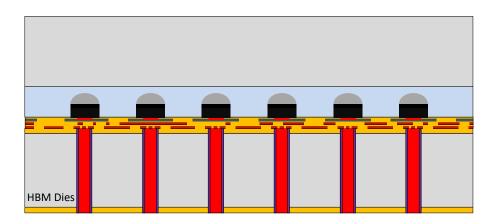
- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

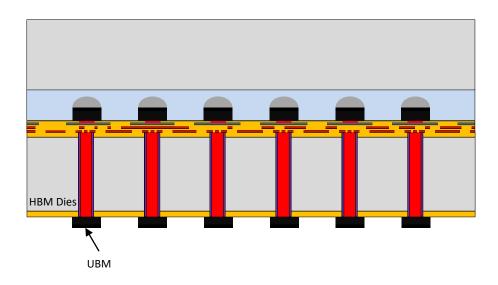
Cost Analysis

Selling Price Analysis

Feedback


About System Plus




DRAM Die

Logic Die

• Via reveal: Oxide Passivation + CMP

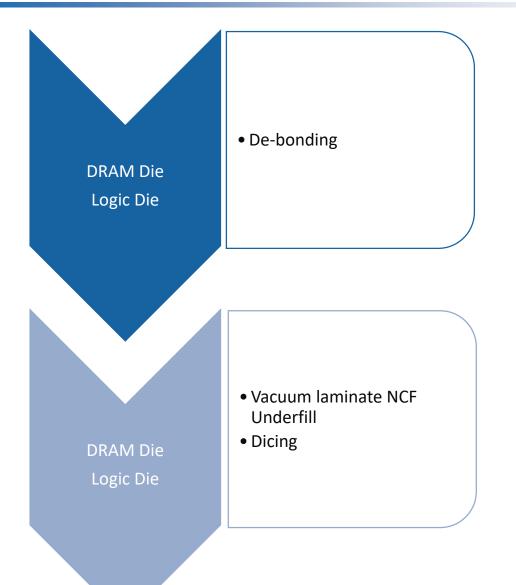
drawing not to scale

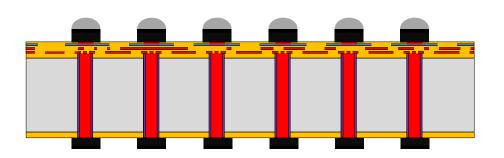
HBM – Micro-Bumping Process Flow (4/4)

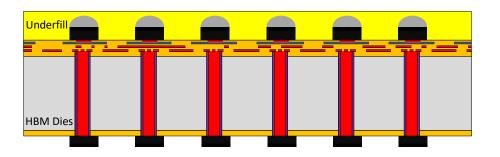
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

<u>Feedback</u>

HBM Stacking Process Flow (1/4)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

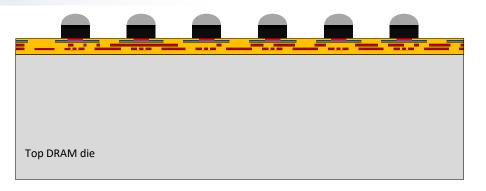
Cost Analysis

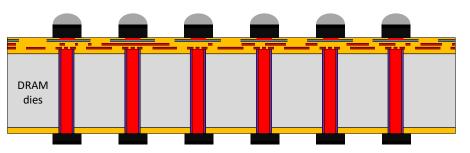
Selling Price Analysis

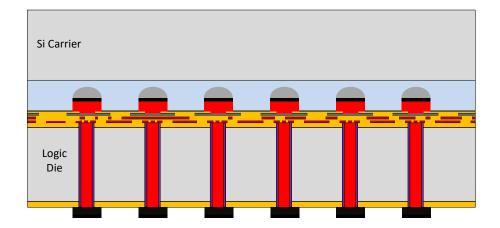
Feedback

About System Plus

- Die thickness 400µm
 - TSVs
 - Micro-Bumps




Top DRAM Die


- Die thickness 50μm
- TSVs
- Micro-Bumps

- Die thickness 50µm
- TSVs
- Micro-Bumps

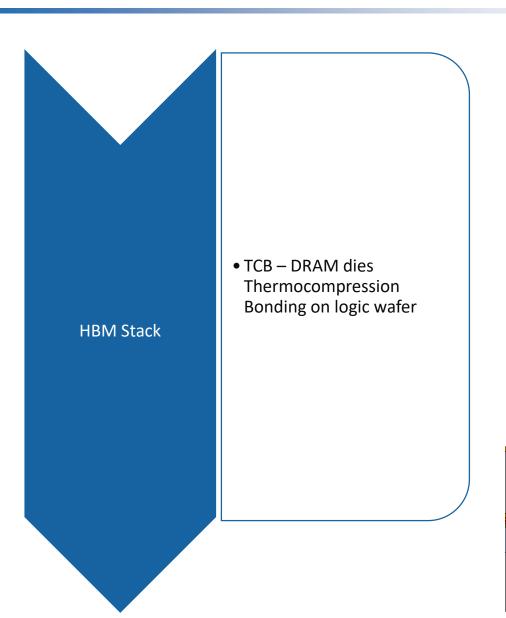
drawing not to scale

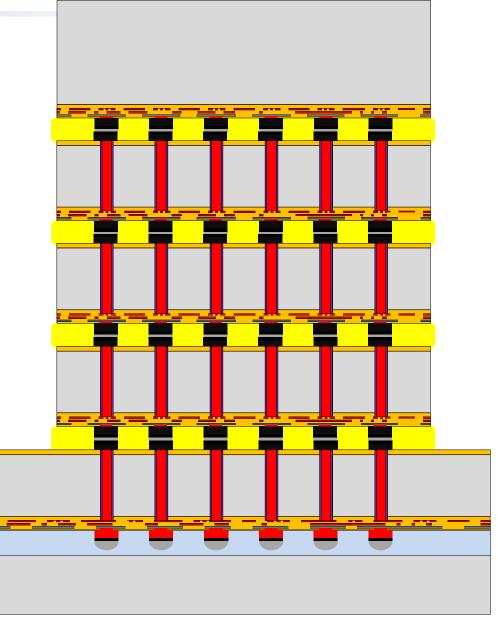
HBM Stacking Process Flow (2/4)

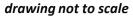
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

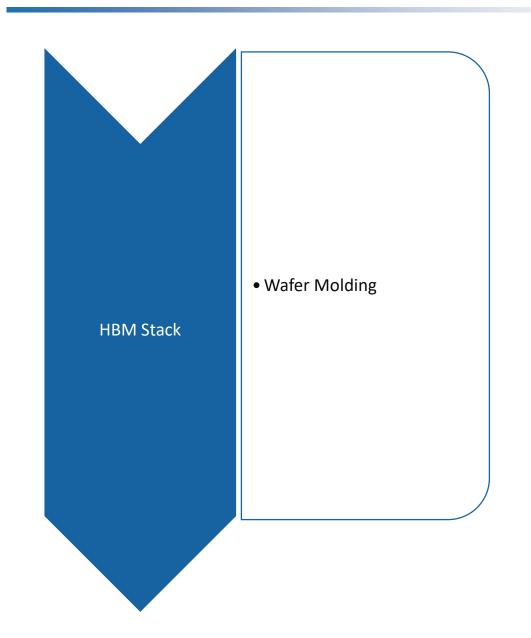
Feedback

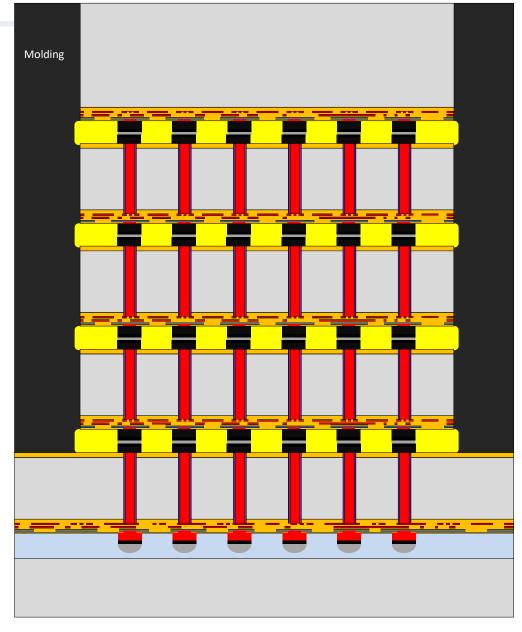
HBM Stacking Process Flow (3/4)

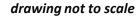
Overview / Introduction

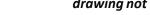
Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis


Selling Price Analysis

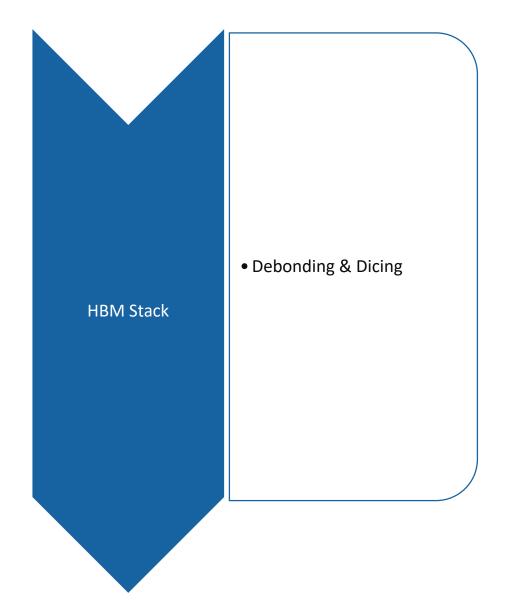
<u>Feedback</u>

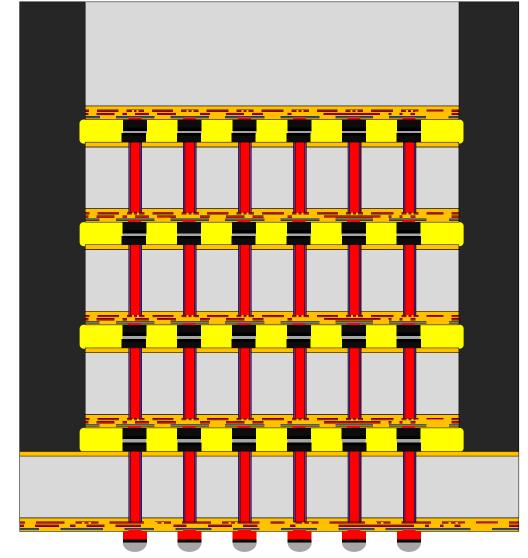
HBM Stacking Process Flow (4/4)

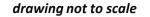
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- ► HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

<u>Feedback</u>

<u>Company Profile & Supply</u> Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- ▶ HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

<u>Feedback</u>

About System Plus

HBM Wafer Fabrication Unit

We assume that the manufacturing of the HBM dies are made by Samsung on 300mm wafers.

Wafer fab unit:

o Name: Samsung Line 15

o Wafer diameter: 300mm (12-inch)

Capacity: 140,000 wafers / month

o Year of start: 2006

o Products: Memory

o Location: Hwasung, South Korea

- This manufacturing line has been created in 2006.
 - We assume that clean room and equipment are depreciated.
 - We estimate that a residual depreciation of 50% is existing on both equipment and clean room to maintain the efficiency of the line.

Interposer Process Flow

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

- Interposer Front-End Process:
 - 300mm Silicon wafer Substrate:
 - TSV via-Middle Process type:
 - BEOL 2 ML (1 Cu + 1 Al)Metal layers: 0
 - Interposer Area: 1,170mm²
- Test:
 - Wafer sort (Probe test) Test type:

TSMC TSV Process

- Lithography
- Silicon Etch: DRIE (100µm depth, 15µm diam)
- PR Strip : Resist Strip
- Oxide Liner: PECVD (SiO2, 0.9μm)
- Barrier/Seed: PVD-Tantalum (Ta, 0.05µm)
- Barrier/Seed: PVD-Copper (Cu, 0.1µm)
- CU filling: Electroplating-Copper (Cu)
- TSV Anneal
- Cu & Ta CMP

TSMC Micro-Bumping Process

- UBM : PVD Titanium (Ti, 0.1μm)
- UBM: PVD Copper (Cu, 0.3μm)
- UBM : Lithography
- UBM : Electroplating-Copper (Cu, 9.8μm)
- UBM: Electroplating-Nickel (Ni, 4.7μm)
- UBM: Electroplating-Copper (Cu, 2.8μm)
- UBM : Resist Strip
- UBM : Wet Etching Copper
- **UBM**: Wet Etching Titanium

ظ TSMC CoW Process

- GPU Die Bonding
- HBM Stacks Bonding
- Solder Reflow
- CUF Underfill Deposition
- Underfill Curing
- Wafer Molding
- Mold thinning

TSMC Back-side Process

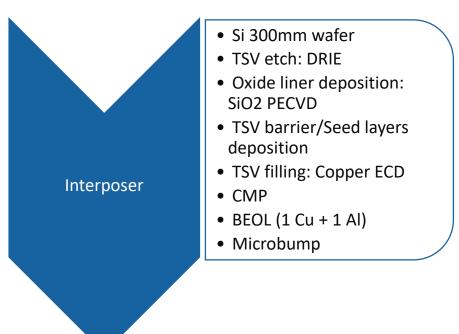
- Temporary Bonding: Edge Trimming
- Temporary Bonding : Spin Coat Elastomer
- Temporary Bonding: bonding to carrier
- Backside Thinning
- TSV Via Reveal: Si etch
- TSV Via Reveal: PECVD Oxide (0.5µm)
- TSV Via Reveal: CMP
- Passivation: Polyimide spin-coating
- Passivation: Lithography
- Passivation: baking
- Copper Pillar: PVD Titanium (Ti, 0.1µm)
- Copper Pillar: Lithography
- Copper Pillar: Wet Etching Titanium
- Copper Pillar: Resist Strip
- Copper Pillar: Electroplating-Copper (Cu, 40µm)
- Bumping: Electroplating Solder (SnAg, 35µm)
- Carrier debonding

Interposer – TSV, BEOL & Microbump Process Flow

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

Interposer – CoW Process Flow (1/7)

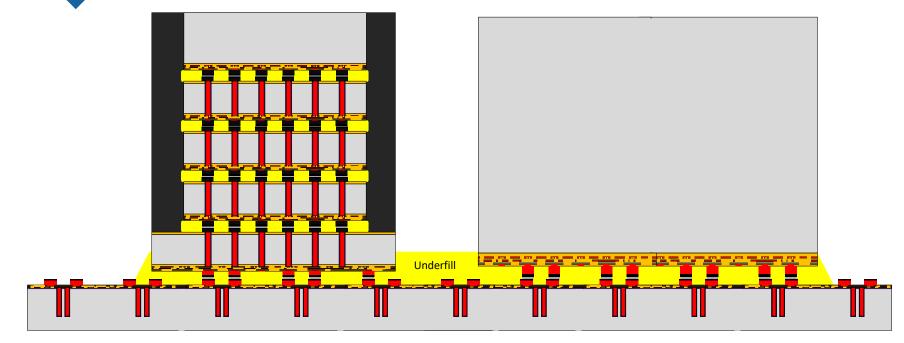
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

- Pick & Place Dies on interposer
- Reflow
- CUF Underfill Deposition & Curing

Interposer – CoW Process Flow (2/7)

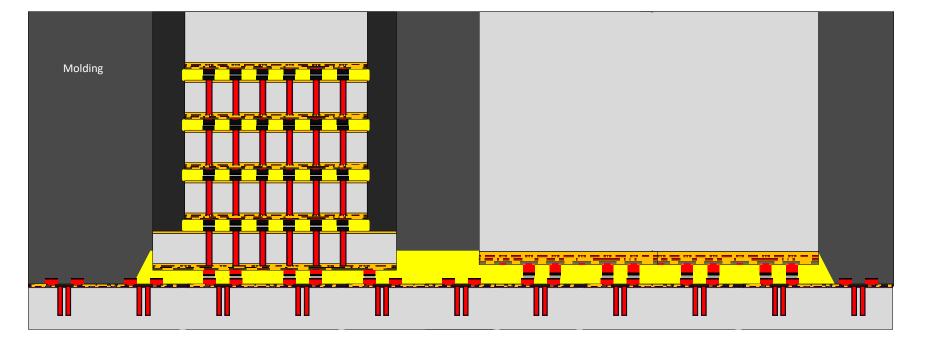
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- ▶ Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

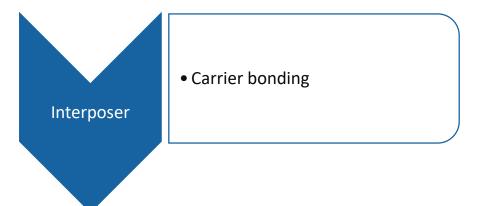
- Interposer Molding
- Mold Thinning

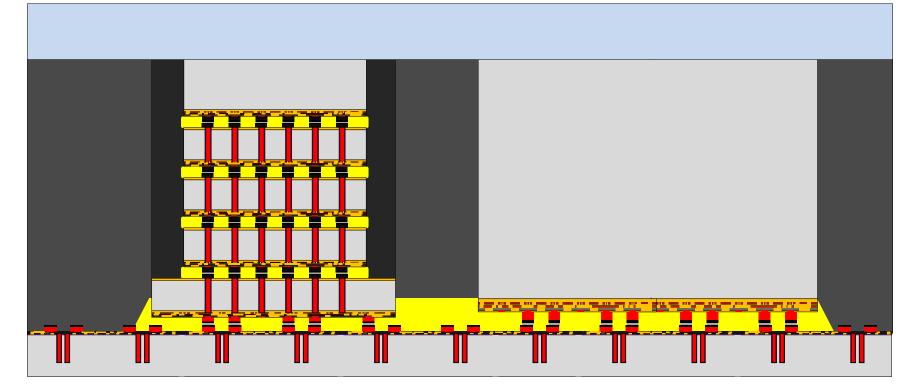
Interposer – CoW Process Flow (3/7)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- ▶ Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

Interposer – CoW Process Flow (4/7)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- ▶ Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

- Backside thinning
- Via reveal

Interposer – CoW Process Flow (5/7)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

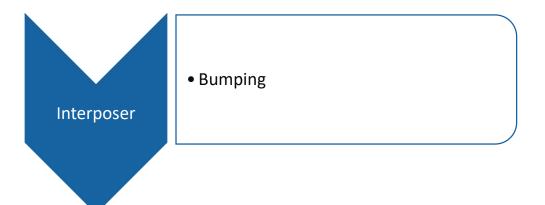
- Via reveal: Oxide Passivation + CMP
- Copper pillar: Polyimide deposition & pattern + Ti deposition & pattern + **Copper Deposition**

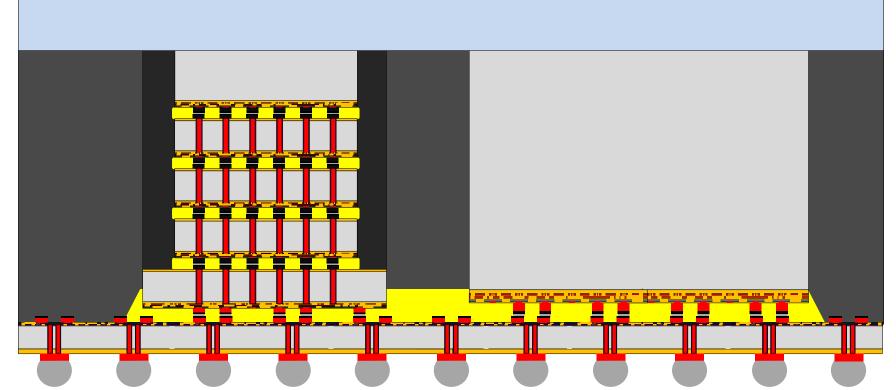
Interposer – CoW Process Flow (6/7)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow


- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- ▶ Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

Interposer – CoW Process Flow (7/7)

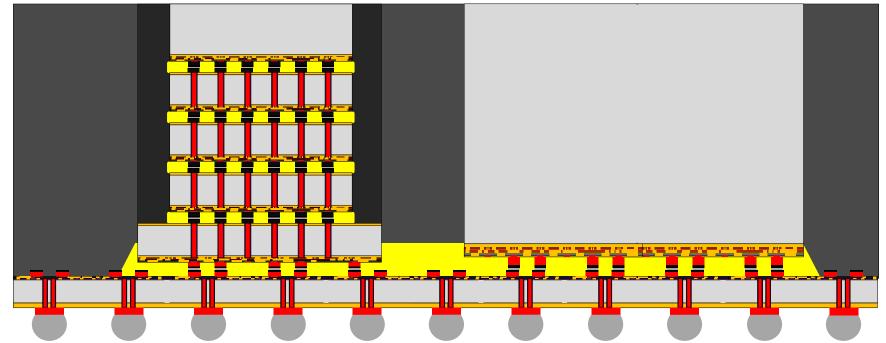
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- ▶ Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

<u>Feedback</u>

- Carrier debonding
- Dicing

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- ▶ Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Interposer Wafer Fabrication Unit

We assume that the manufacturing of the CoW process is made by TSMC on 300mm wafers.

Wafer fab unit:

Name:

300mm (12-inch) Wafer diameter:

Capacity:

Year of start:

Products: Foundry

Taiwan Location:

Final Assembly Process Flow

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- ► Final Assembly Process
- o Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

- Packaging Process:
 - fcBGA-2540 (55x55mm) Package type:
 - Substrate: 12-Layer PCB Laminate
 - 2.5D stacking Process type:
 - Special features: Flip-Chip Bonding & Reflow

Final Assembly Process Flow (oS)

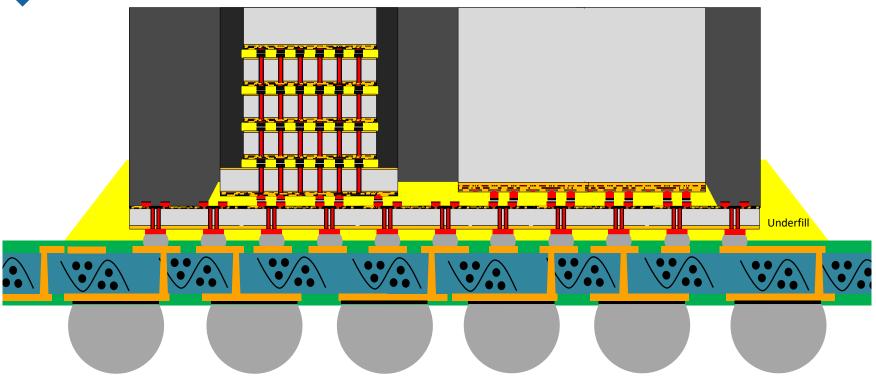
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- ► Final Assembly Process
- o Final Assembly Unit


Cost Analysis

Selling Price Analysis

Feedback

- Passives assembly
- Pick & Place interposer on substrate
- Reflow
- CUF Underfill Deposition & Curing
- Metal Frame deposition
- Laser marking & Dicing

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- ▶ Final Assembly Unit

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Final Assembly Unit

- We assume that the final assembly is made by TSMC.
- Fab unit:
 - Name:
 - Capacity:
 - Year of start:
 - Assembly Products:
 - Location: Taiwan

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- Summary
- Supply Chain
- o Yields
- o GPU Cost
- HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

<u>Feedback</u>

About System Plus

Summary of the Cost Analysis

The component is designed by NVIDIA and manufactured mainly by TSMC.

Production of the HBM stacks are assumed to be realized by Samsung on 300mm (12-inch) wafers in South Korea.

- o The HBM stack wafer cost is estimated at \$8,952 (medium yield estimation).
- o The HBM stack cost is estimated at \$17.08 (medium yield estimation).

Production of the GPU die is assumed to be realized by TSMC on 300mm (12-inch) wafers in Taiwan.

- o The GPU wafer cost is estimated at \$8,356 (medium yield estimation).
- o The GPU die cost is estimated at \$220 (medium yield estimation).

Production of the interposer and Chip-on-Wafer (CoW) assembly are supposed to be realized by TSMC on 300mm (12-inch) wafers in Taiwan.

- o The interposer and CoW assembly cost is estimated at \$1,593 (medium yield estimation).
- o The total CoW stack (including GPU & HBM) wafer cost is estimated at \$12,828 (medium yield estimation).
- o The CoW stack (including GPU & HBM) cost is estimated at \$475 (medium yield estimation).

The Volta component (GPU + HBM + Substrate + Assembly) cost from NVIDIA's perspective ranges from \$456 to \$626 according to yield hypotheses.

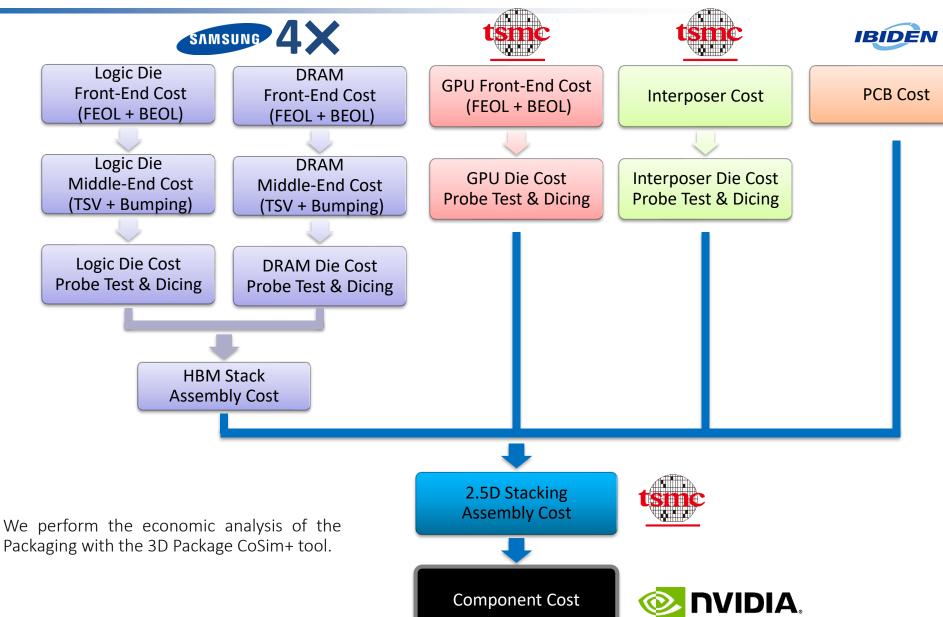
The final price paid by OEMs is estimated to ranges from \$1,138 to \$1,561 according to yield hypotheses.

Main Steps of Economic Analysis

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis


Manufacturing Process Flow

Cost Analysis

- o Summary
- Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- Yields
- o GPU Cost
- HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus

Yield Explanation

The wafers and dies are tested during the process flow. There are 2 types of test:

- o The tests on the physical characteristics of the wafer like the thickness of a deposited layer.
- The tests on the electrical functionalities of the die.

The difference is important because with the physical test, a poor result means a problem on a step and all the dies on the wafer are defective, so the wafer is scrapped. Usually these yields are good for mature technologies.

The tests on the dies are different. Each die is tested, one by one or simultaneously using "parallel" tests, and only the defective dies are scraped. During the probe test which is realized on the wafer, the defective dies are marked and are not assembled in package.

In this reverse costing study, 4 yields are used:

Process	Yield	Apply on	Description
Front-End	Middle-End Yield	Wafer	The defective wafers are scraped
Back-End 0	Probe yield	Die	The defective dies are scraped. The number of good dies is function of the probe yield. Only the good dies are assembled in the package.
Back-End 1	Packaging yield	Die + Package	The defective components are scraped
Back-End 1	Final test yield	Die + Package	The defective components are scraped

Yield Hypotheses

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

<u>Feedback</u>

About System Plus

	GPU Die				
	Low Yield Medium Yield High				
Probe Test yield	50.0%	60.0%	70.0%		

	HBM Stack				
	Low Yield	Medium Yield	High Yield		
Middle-End Yield	93.0%	94.0%	95.0%		
Probe Test Yield	70.0%	80.0%	90.0%		

	Interposer				
	Low Yield	Medium Yield	High Yield		
Middle-End Yield	93.0%	94.0%	95.0%		
CoW Yield	90.0%	91.0%	92.0%		
Probe Test Yield	70.0%	75.0%	80.0%		

	Component			
	Low Yield	Medium Yield	High Yield	
Packaging & Final Test Yield	97.0%	98.0%	99.0%	

In our simulation, we assume a development and a production ramp up without important technical problem.

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

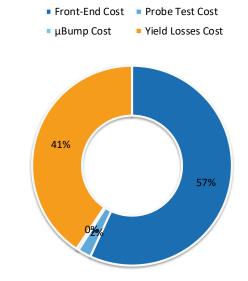
Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus


GPU Wafer & Die Cost

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Front-End Price	\$8,000.00	95.7%	\$8,000.00	95.7%	\$8,000.00	95.7%
Probe Test Cost	\$300.00	3.6%	\$300.00	3.6%	\$300.00	3.6%
μBump Cost	\$55.81	0.7%	\$55.81	0.7%	\$55.81	0.7%
Total Wafer Cost (including foundry margin)	\$8,355.81	100%	\$8,355.81	100%	\$8,355.81	100%
Nb of potential good dies per wafer	64		64		64	
Nb of good dies per wafer	32		38		44	
Front-End Cost	\$125.00	47.9%	\$125.00	56.8%	\$125.00	65.8%
Probe Test Cost	\$4.69	1.8%	\$4.69	2.1%	\$4.69	2.5%
μBump Cost	\$0.87	0.3%	\$0.87	0.4%	\$0.87	0.5%
Yield Losses Cost	\$130.56	50.0%	\$89.33	40.6%	\$59.35	31.3%
Die Cost (including foundry margin)	\$261.12	100%	\$219.89	100%	\$189.90	100%

The wafer cost for the GPU is estimated to \$8,356, including foundry overheads.

The number of good dies per wafer is estimated to range from 32 to 44 according to yield variations, which results in a GPU die cost ranging from \$190 to \$261.

Die Cost Breakdown (Medium Yield)

HBM TSV Manufacturing Cost

Company	Profile	&	Supply
Chain			

Overview / Introduction

Physical Analysis

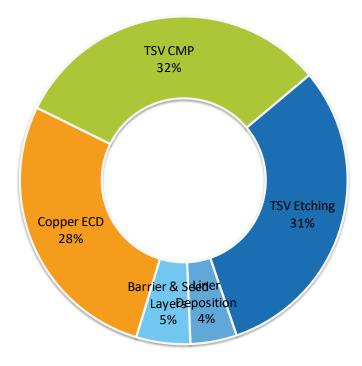
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ▶ HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


About System Plus

	Cost	Breakdown
TSV Etching	\$24.73	30.9%
Liner Deposition	\$3.67	4.6%
Barrier & Seed Layers	\$4.27	5.3%
Copper ECD	\$22.11	27.6%
TSV CMP	\$25.30	31.6%
TSV Manufacturing Cost	\$80.09	100%

The TSV manufacturing cost for the DRAM dies and the logic die is estimated to \$80 per wafer.

The TSV etching (DRIE) represents 31% of the manufacturing cost.

TSV Cost Breakdown

Company Profile & Supply Chain

Physical Analysis

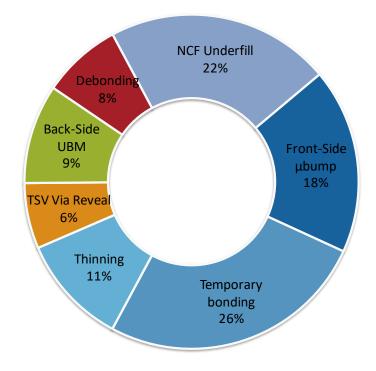
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ▶ HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


About System Plus

DRAM Microbumping Cost

DRAM Micro-Bumping Cost	Cost	Breakdown
Front-Side μbump	\$33.77	18.0%
Temporary bonding	\$48.94	26.0%
Thinning	\$20.07	10.7%
TSV Via Reveal	\$11.94	6.3%
Back-Side UBM	\$18.09	9.6%
Debonding	\$14.46	7.7%
NCF Underfill	\$40.86	21.7%
DRAM Micro-Bumping Cost	\$188.14	100%

The DRAM micro-bumping manufacturing cost is estimated to \$188 per wafer.

DRAM Micro-Bumping Cost Breakdown

DRAM Middle-End Cost (TSV + μ Bump)

Overview / Introduction	n
-------------------------	---

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

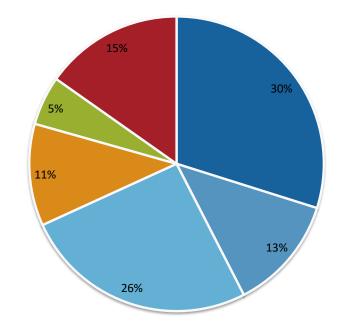
Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus


	Cost	Breakdown
TSV process	\$80.09	29.9%
Front-Side µbump	\$33.77	12.6%
Temporary bonding & Thinning	\$69.01	25.7%
TSV Via Reveal & Back-Side UBM	\$30.03	11.2%
Debonding	\$14.46	5.4%
NCF Underfill	\$40.86	15.2%
DRAM Middle-End Manufacturing Cost	\$268.22	100%

The middle-end cost with TSV and micro-bumps is estimated to \$268.

The largest portion of the manufacturing cost is due to the TSV process at 30%.

Middle-End Cost Breakdown (Medium Yield)

Total DRAM Middle-End Cost (TSV + μ Bump)

Company Profile & Supply Chain

Overview / Introduction

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
DRAM Front-End cost (FEOL+BEOL)	\$1,500.00		\$1,500.00		\$1,500.00	

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
TSV Manufacturing Cost	\$80.09	20.0%	\$80.09	21.0%	\$80.09	22.2%
Micro-Bumping Cost	\$188.14	46.9%	\$188.14	49.4%	\$188.14	52.1%
Yield Losses Cost	\$133.09	33.2%	\$112.87	29.6%	\$93.06	25.8%
Total DRAM Middle-End Cost	\$401.31	100%	\$381.09	100%	\$361.29	100%

By taking into account the yield losses, the total middle-end cost ranges from \$361 to \$401 according to yield variations.

DRAM Wafer & Die Cost

Company	Profile	&	Su	oply
Chain				

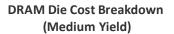
Overview / Introduction

Physical Analysis

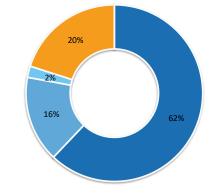
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost


Selling Price Analysis

Feedback


About System Plus

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Front-End Cost	\$1,500.00	76.9%	\$1,500.00	77.7%	\$1,500.00	78.5%
Middle-End Cost	\$401.31	20.6%	\$381.09	19.7%	\$361.29	18.9%
Probe Test & Dicing Cost	\$50.00	2.6%	\$50.00	2.6%	\$50.00	2.6%
Total Wafer Cost	\$1,951.31	100%	\$1,931.09	100%	\$1,911.29	100%
Nb of potential good dies per wafer	728		728		728	
Nb of good dies per wafer	509		582		655	
Front-End Cost	\$2.06	53.7%	\$2.06	62.1%	\$2.06	70.6%
Middle-End Cost	\$0.55	14.4%	\$0.52	15.8%	\$0.50	17.0%
Probe Test & Dicing Cost	\$0.07	1.8%	\$0.07	2.1%	\$0.07	2.4%
Yield Losses Cost	\$1.15	30.1%	\$0.67	20.1%	\$0.29	10.0%
DRAM Die Cost	\$3.83	100%	\$3.32	100%	\$2.92	100%

The number of good dies per wafer is estimated to ranges from 509 to 655 according to yield variations, which results in a die cost ranging from \$2.92 to \$3.83.

- Front-End Cost
- Middle-End Cost
- Probe Test & Dicing Cost Yield Losses Cost

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ▶ HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus

Total Logic Middle-End Cost (TSV + μBump)

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Logic Front-End cost (FEOL+BEOL)	\$1,500.00		\$1,500.00		\$1,500.00	

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
TSV Manufacturing Cost	\$80.09	21.7%	\$80.09	22.9%	\$80.09	24.3%
Micro-Bumping Cost	\$158.41	42.9%	\$158.41	45.3%	\$158.41	48.0%
Yield Losses Cost	\$130.85	35.4%	\$110.97	31.8%	\$91.50	27.7%
Total Logic Middle-End Cost	\$369.35	100%	\$349.46	100%	\$330.00	100%

By taking into account the yield losses, the total middle-end cost ranges from \$330 to \$369 according to yield variations.

HBM Stacking Cost (TSV + μBump)

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

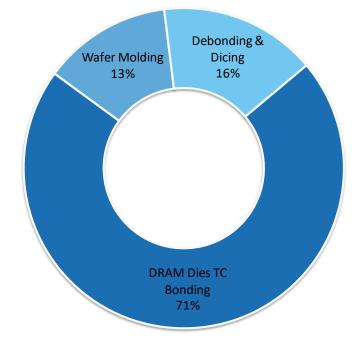
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


About System Plus

	Cost	Breakdown
DRAM Dies TC Bonding	\$105.15	71.2%
Wafer Molding	\$19.19	13.0%
Debonding & Dicing	\$23.42	15.8%
HBM Stacking Cost	\$147.75	100%

HBM Stacking Cost Breakdown

The HBM stacking cost with thermocompression bonding and wafer molding is estimated to \$148.

The largest portion of the manufacturing cost is due to the TCB process at 71%.

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus

Total HBM Wafer Cost

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Logic Front-End Cost	\$1,500.00	80.2%	\$1,500.00	81.1%	\$1,500.00	82.0%
Logic Middle-End Cost	\$369.35	19.8%	\$349.46	18.9%	\$330.00	18.0%
Total Logic Wafer Cost	\$1,869.35	100%	\$1,849.46	100%	\$1,830.00	100%
DRAM Dies Cost	\$7,038.53		\$6,954.57		\$6,886.46	
HBM Stacking Cost	\$147.75		\$147.75		\$147.75	
Total HBM Wafer Cost	\$9,055.63		\$8,951.78		\$8,864.21	

By taking into account the logic & DRAM cost and the stacking, the total HBM wafer cost ranges from \$8,864 to \$9,056 according to yield variations.

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

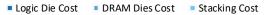
Cost Analysis

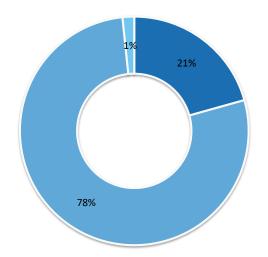
- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- ▶ HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus


HBM Stack Cost


	Low	Yield	Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Total HBM Wafer Cost	\$9,055.63		\$8,951.78		\$8,864.21	
Nb of potential good stack per wafer	656		656		656	
Nb of good stack per wafer	459		524		590	
Logic Die Cost	\$4.07	20.6%	\$3.53	20.7%	\$3.10	20.6%
DRAM Dies Cost	\$15.33	77.7%	\$13.27	77.7%	\$11.67	77.7%
Stacking Cost	\$0.32	1.6%	\$0.28	1.7%	\$0.25	1.7%
HBM Stack Cost	\$19.73	100%	\$17.08	100%	\$15.02	100%
Samsung Gross Profit	\$19.73	+50.0%	\$17.08	+50.0%	\$15.02	+50.0%
HBM Stack Price	\$39.46		\$34.17		\$30.05	

The number of good HBM stack per wafer is estimated to ranges from 459 to 590 according to yield variations, which results in a HBM stack cost ranging from \$15.0 to \$19.7.

We estimate a gross margin of 50% for Samsung, which results in a HBM stack price ranging from \$30 to \$39. This corresponds to the selling price to NVIDIA.

HBM Stack Cost Breakdown (Medium Yield)

Interposer TSV Manufacturing Cost

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

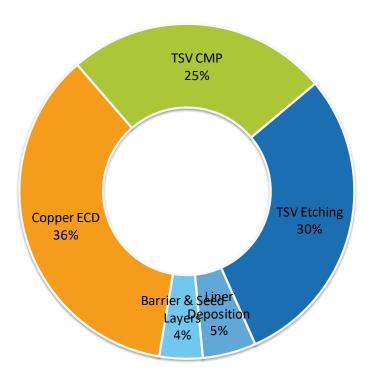
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


About System Plus

	Cost	Breakdown
TSV Etching	\$29.03	29.4%
Liner Deposition	\$5.10	5.2%
Barrier & Seed Layers	\$4.12	4.2%
Copper ECD	\$35.50	36.0%
TSV CMP	\$24.92	25.3%
TSV Manufacturing Cost	\$98.66	100%

The TSV manufacturing cost for the interposer is estimated to \$99 per wafer.

The copper deposition steps represents 36% of the manufacturing cost.

Interposer TSV Cost Breakdown

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

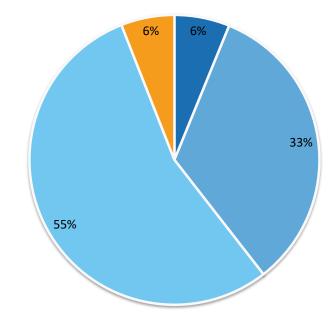
Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus


Interposer Micro-Bumping Cost

Interposer Micro-Bumping Cost	Cost	Breakdown
Clean Room Cost	\$2.94	6.2%
Equipment Cost	\$15.91	33.3%
Consumable Cost	\$26.06	54.6%
Labor Cost	\$2.84	6.0%
Interposer Micro-Bumping Cost	\$47.76	100%

Interposer Micro-Bumping Cost Breakdown

■ Clean Room Cost ■ Equipment Cost ■ Consumable Cost ■ Labor Cost

The interposer micro-bumping manufacturing cost is estimated to \$48 per wafer.

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus

Total Interposer Wafer Cost (TSV + μBump)

Interposer	Low Yield		Mediu	m Yield	High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Raw Wafer Cost (Si 300mm)	\$75.00	20.1%	\$75.00	20.4%	\$75.00	20.6%
TSV Manufacturing Cost	\$98.66	26.5%	\$98.66	26.8%	\$98.66	27.1%
Interposer BEOL cost (2 ML)	\$125.00	33.6%	\$125.00	33.9%	\$125.00	34.3%
Micro-Bumping Cost	\$47.76	12.8%	\$47.76	13.0%	\$47.76	13.1%
Yield losses Cost	\$26.07	7.0%	\$22.11	6.0%	\$18.23	5.0%
Total Interposer Wafer Cost	\$372.49	100%	\$368.53	100%	\$364.65	100%

By taking into account the yield losses, the total Interposer Wafer cost ranges from \$365 to \$372 according to yield variations.

This cost do not take into account the interposer backside process which is realized after the bonding of the dies on the interposer.

Chip-on-Wafer (CoW) Assembly Cost

Overview ,	/_	Introd	luct	ior

Company Profile & Supply Chain

Physical Analysis

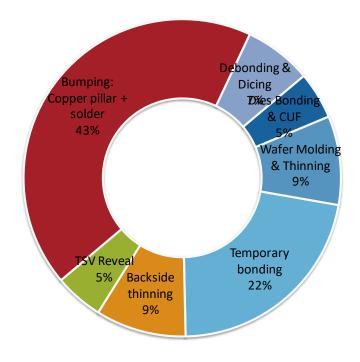
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


About System Plus

	Cost	Breakdown
Dies Bonding & CUF	\$10.33	4.8%
Wafer Molding & Thinning	\$19.46	9.1%
Temporary bonding	\$47.06	21.9%
Backside thinning	\$19.81	9.2%
TSV Reveal	\$10.65	5.0%
Bumping: Copper pillar + solder	\$92.75	43.2%
Debonding & Dicing	\$14.78	6.9%
CoW Assembly Cost	\$214.84	100%

The Chip-on-Wafer (CoW) manufacturing cost is estimated to \$215 per wafer.

The bumping with copper pillars represents 43% of the manufacturing cost.

CoW Stacking Cost Breakdown

Chip-on-Wafer (CoW) Stack Wafer Cost

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

<u>Feedback</u>

About System Plus

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Interposer Manufacturing Cost	\$372.49	20.5%	\$368.53	23.1%	\$364.65	26.3%
CoW Cost	\$214.84	11.8%	\$214.84	13.5%	\$214.84	15.5%
Yield Losses Cost	\$1,229.01	67.7%	\$1,009.82	63.4%	\$805.41	58.2%
Total Interposer + CoW Wafer Cost	\$1,816.34	100%	\$1,593.19	100%	\$1,384.90	100%
Foundry Gross Profit	\$1,816.34	+50.0%	\$1,593.19	+50.0%	\$1,384.90	+50.0%
Total Interposer + CoW Wafer Price	\$3,632.69		\$3,186.38		\$2,769.80	
HBM Stacks Cost	\$3,945.81		\$3,690.05		\$3,365.40	
GPU Dies Cost	\$6,527.98		\$5,937.03		\$5,317.34	
Filler Dies Cost	\$14.22		\$14.45		\$14.15	
Total CoW Stack Wafer Cost	\$14,120.69		\$12,827.91		\$11,466.68	

The manufacturing cost of the interposer including the Chip-on-Wafer assembly steps is estimated to range from \$1,385 to \$1,816 according to yield variations.

By taking into account a gross margin for TSMC (estimated to 50%), the interposer + CoW wafer price is estimated to range from \$2,770 to \$3,633 according to yield variations.

By adding the cost of the HBM Stacks (4) and the GPU die with fillers, the total Chip-on-Wafer stack wafer cost ranges from \$11,467 to \$14,121 according to yield variations.

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

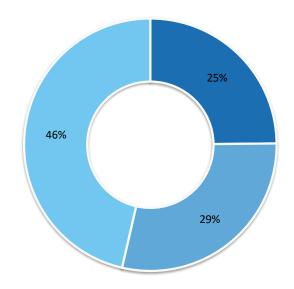
Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

About System Plus


Chip-on-Wafer (CoW) Stack Cost

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Total CoW Stack Wafer Cost	\$14,120.69		\$12,827.91		\$11,466.68	
Nb of potential good dies per wafer	36		36		36	
Nb of good interposer per wafer	25		27		28	
Interposer + CoW Cost	\$145.31	25.7%	\$118.01	24.8%	\$98.92	24.2%
HBM Stack Cost	\$157.83	27.9%	\$136.67	28.8%	\$120.19	29.3%
GPU + Filler Dies Cost	\$261.69	46.3%	\$220.43	46.4%	\$190.41	46.5%
CoW Stack Cost	\$564.83	100%	\$475.11	100%	\$409.52	100%

CoW Stack Cost Breakdown (Medium Yield)

■ Interposer + CoW Cost ■ HBM Stack Cost ■ GPU + Filler Dies Cost

The number of good CoW stack per wafer is estimated to ranges from 25 to 28 according to yield variations, which results in a CoW stack cost ranging from \$410 to \$565.

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o Yields
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- Component Cost

Selling Price Analysis

Feedback

About System Plus

Component Cost

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
GPU + Filler Dies Cost	\$261.69	41.8%	\$220.43	41.8%	\$190.41	41.7%
HBM Stack Cost	\$157.83	25.2%	\$136.67	25.9%	\$120.19	26.3%
Interposer + CoW Cost	\$145.31	23.2%	\$118.01	22.4%	\$98.92	21.7%
Package Substrate Cost	\$27.23	4.4%	\$27.23	5.2%	\$27.23	6.0%
Final Packaging & Final Test cost	\$15.00	2.4%	\$15.00	2.8%	\$15.00	3.3%
Yield losses	\$18.77	3.0%	\$10.56	2.0%	\$4.56	1.0%
Component Cost	\$625.83	100%	\$527.89	100%	\$456.31	100%

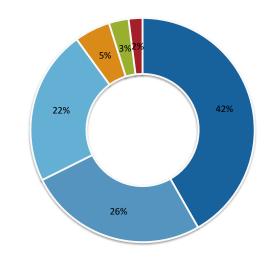
The package substrate is supposed to be made by Ibiden in Japan.

The Package size is 55x55mm, with a 5+2+5 structure (12 copper layers).

The price of the PCB package substrate is estimated to \$27.23.

The final component cost (GPU + HBM + Substrate + Assembly) ranges from \$456 to \$626 according to yield variations.

The GPU Die represents 42% of the component cost.


The HBM Stacks (x4) represents 26% of the component cost.

The interposer with CoW process represents 22% of the component cost.

The package substrate represent 5% of the component cost.

Component Cost Breakdown (Medium Yield)

- GPU + Filler Dies Cost
- HBM Stack Cost
- Interposer + CoW Cost
- Package Substrate Cost
- Final Packaging & Final Test cost Yield losses

SELLING PRICE

Manufacturer Financial Ratios

Financial ratios of NVIDIA (2018 financial results):

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Financial Ratios

o Manufacturer Price

<u>Feedback</u>

About System Plus

40.1% for Cost Of Sales (59.9% gross margin)

8.4% for G&A

18.5% for R&D

33.0% for Operating income

	Ja	nuary 28, 2018	January 31, 2016			
Revenue	\$	9,714	\$ 6,910	\$ 5,010		
Cost of revenue		3,892	2,847	2,199		
Gross profit		5,822	4,063	2,811		
Operating expenses						
Research and development		1,797	1,463	1,331		
Sales, general and administrative		815	663	602		
Restructuring and other charges		_	3	131		
Total operating expenses		2,612	2,129	2,064		
Income from operations		3,210	1,934	747		
Interest income		69	54	39		
Interest expense		(61)	(58)	(47)		
Other, net		(22)	(25)	4		
Total other income (expense)		(14)	(29)	(4)		
Income before income tax		3,196	1,905	743		
Income tax expense		149	239	129		
Net income	\$	3,047	\$ 1,666	\$ 614		

Year Ended

Estimated Manufacturer Price

Overview / Introduction

Company Profile & Supply Chain

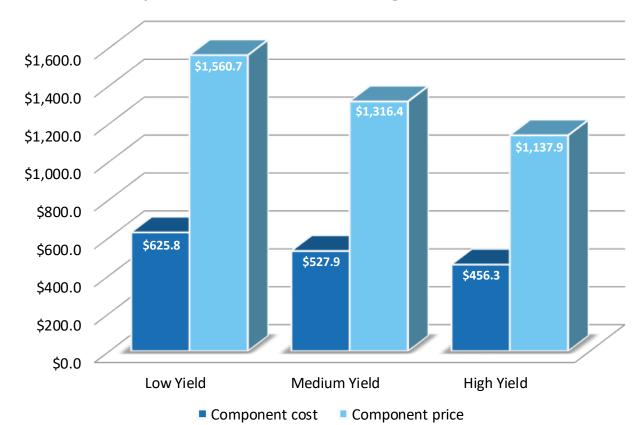
Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

- o Financial Ratios
- ▶ Manufacturer Price


Feedback

About System Plus

		Low Yield		Medium Yield		High Yield	
		Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
	Component cost	\$625.8		\$527.9		\$456.3	
NVIDIA Gross Profit		\$934.8	+60%	\$788.5	+60%	\$681.6	+60%
	Component price	\$1,560.7		\$1,316.4		\$1,137.9	

Component Cost & Price According to Yield Variation

We estimate that NVIDIA could realizes a gross margin of 60% on the Volta component, which results in a final component price ranging from \$1,138 to \$1,561.

CUSTOMER FEEDBACKS

Feedbacks

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

Dear Customer,

Thank you for giving us the opportunity to serve you better.

Please help us by taking only a few seconds to give us your thoughts about the Reverse Costing Report that you have received.

Please note that without any feedback from you, we consider that the report satisfied you.

We appreciate to work with you and want to make sure we meet your expectations.

Sincerely, Wilfried THERON **Quality Manager**

> Click below to access to our online Customer Satisfaction Survey.

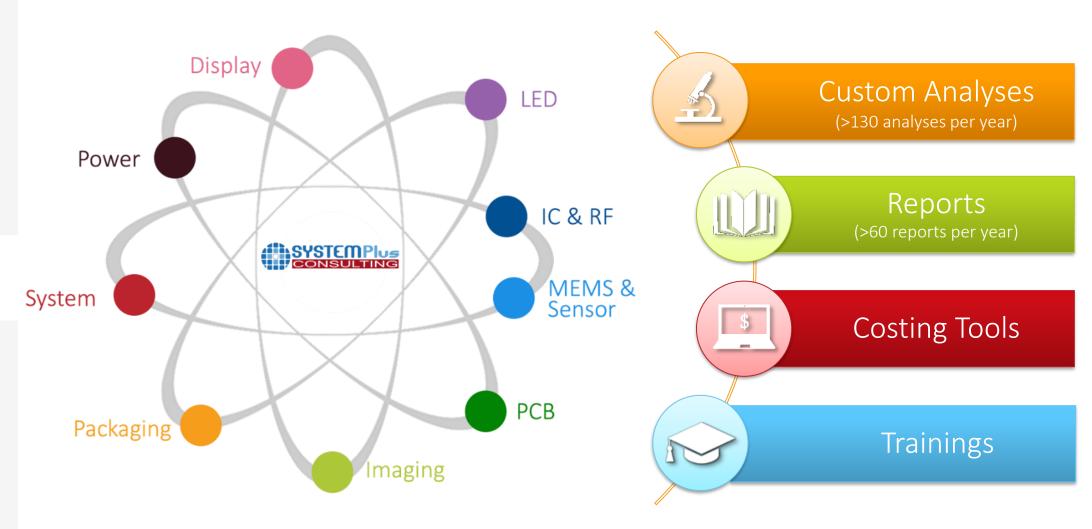
Business Models Fields of Expertise

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Feedback

About System Plus

- Company services
- o Contact
- o Legal

Contact

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

- o Company services
- Contact
- o Legal

Headquarters

22 bd Benoni Goullin 44200 Nantes

FRANCE

+33 2 40 18 09 16 sales@systemplus.fr

Europe Sales Office

Lizzie LEVENEZ Frankfurt am Main **GERMANY** +49 151 23 54 41 82 llevenez@systemplus.fr

America Sales Office

Steve LAFERRIERE Phoenix, AZ

WESTERN US

T:+13106008267

laferriere@yole.fr

Troy Blanchette

EASTERN US

T:+1 704 859 0456 troy.blanchette@yole.fr

Asia Sales Office

Takashi ONOZAWA

Tokyo

JAPAN

T:+81 804 371 4887 onozawa@yole.fr

Mavis WANG TAIWAN

T:+886 979 336 809

wang@yole.fr

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

About System Plus

- o Company services
- o Contact
- Legal

Legal

DISCLAIMER

System Plus Consulting provides cost studies based on its knowledge of the manufacturing and selling prices of electronic components and systems. The given values are realistic estimates which do not bind System Plus Consulting nor the manufacturers quoted in the report. System Plus Consulting is in no case responsible for the consequences related to the use which is made of the contents of this report. The quoted trademarks are property of their owners.

Reverse Costing® is a deposed brand, by System Plus Consulting.

SERVICES

Reverse costing analysis represents the best cost/price evaluation given the publically available data, and estimates completed by industry experts.

These results are open for discussion. We can reevaluate this circuit with your information.

