In-Network Compression for Accelerating IoT Analytics at Scale

HOTI2023

- · Rafael Oliveira
- · Ada Gavrilovska

IoT Background 2m

- IoT Applications
- Devices
 - Telemetry.
 - Sensor-Actuator
- Pub-Sub Model
 - Message sample

In-Network Accelerator Background 1m

- Where is it placed?
- Types of in-network accelerators
- Generic Type

In-Network Accelerator Challenge 1m

- Transferring data from NIC to Host CPU
- Message Types and Challenges
 - Modified: small (values only). Yields high message rate but low Gbps
 - Unmodified: Lots of redundant JSON characters. Yields high Gbps but low message rate.

In-Network Compression Opportunity 1m

- Post Pipeline Opportunity (post critical path)
- Insight
 - Batch small messages
 - Compress and Batch bigger messages

In-Network Compression Challenge 1m

- General Compression algorithm
 - Resource hungry takes resources from critical path
 - Yields subpar compression rate

Comprex

In-Network Compression for Accelerating IoT Analytics at Scale

Insights Driving Comprex 1m

- Post critical-path
 - Relaxed or no Real-Time requirements
- Device Message Behavior
 - Once deployed, device will send same message format
- Redundancy
 - Information to be transferred might already be present in the HOST
- Batching

Comprex: General Structure 1m

Overview Image

Comprex: Compression 2m

 Overview image with Compression Engine, the Topic Table and the Host Comp.Diff side.

- Comp.Diff
 - Comp.Diff detects Static and Dynamic Regions and sends them to the CE
 - Reconstructs message with static regions
- CE:
 - Checks to see if Static Region has changed
 - Removes static regions from message

Comprex: Compression 2m

CE animated example of how it works

Compression 1m

- Relationship of stored messages and N and the impact on lossiness
- CE Check.Diff
 - CE parallel checks on static region allows N to grow bigger with no impact on lossiness

Micro-Bench 1m

Decompression throughput vs N

Comprex: Batching 1m

- How it works:
 - Message sizes, batch size
 - Encoding
 - Execution

Evaluation 1m

Comprex vs Snappy

Evaluation 1m

- Comprex impact on throughput
- Comprex no-negative-impact on latency

Summary .5m

 Comprex: as IoT-Specific compression that yields high data transfer throughput without impacting latency.

Thank You.

