DERCHANG KAU

10847 Linda Vista Dr. Cupertino, CA | 408-398-6086 | derchang@gmail.com

SUMMARY

Intel Fellow in semiconductor technology research and development. Expertise in heterogenous technology integration for high-performance computing, high-bandwidth interconnect and memory subsystems. Proven track record of driving innovation and delivering cutting-edge solutions. Adept at leading cross-functional teams and collaborating with industry partners to advance semiconductor technologies.

EXPERIENCE

June 26, 1995 – present, Intel Corporation, Santa Clara, CA, USA

Jul 2021 – Present | Intel Fellow, Director of Technology Pathfinding Corporate Planning Group / Foundry Technology Engineering

Strategic Technology Roadmap Development and supply chain engagement with cross-functional leadership **Innovative** heterogenous integration of Logic, Memory, Power, Signaling and Packaging technologies **Leading** high bandwidth low power memory solutions cross the span from data center to client compute

Jan 2017 – Jun 2021 | Intel fellow, Director of 3D-XPoint Memory Technology Nonvolatile Memory Solution Group / Technology Development

Avid inventor leading R&D of technology and design teams exploring novel memory architecture **Developed** the strategic direction to build persistent memory using atomistic memory & switching devices **Leadership** and vision achieving breakthrough advances for Intel's leadership in Storage Class Memory

Apr 2005 – Dec 2016 | Senior Principal Engineer, Director of Disruptive Memory Technology Nonvolatile Memory Solution Group / Technology Development

Guided the foundational research of Phase Change Memory and Ovonic Threshold Switch technologies **Championed** the Product life cycle transition from initial concepts to the successful inception of Intel's first-generation 3D-XPoint memory product, a.k.a. Optane[™] memory, in one decade

Apr 2003 – Mar 2005 | Principal Engineer, Group Lead of NOR Flash Technology Flash Product Group / Technology Development

Led 65nm Self-Align Contact (SAC) NOR Flash memory MLC device and architecture design (SAC NOR Flash is commonly recognized as the de facto last generation NOR flash technology, which is still running in mainstream production.)

Apr 2000 – Mar 2003 | Senior Staff Engineer, SOC Technology Development Lead California Tech Development and Manufacturing / Process Integration

Technologist and architect for 90nm Mixed Signal and Embedded Flash Technology **Managed** Design Collateral enabling global collaboration cross US, Europe and Israel design teams **Delivered** world leading AFE and baseband processor used by Blackberry **Demonstrated** the first Intel CMOS GSM radio and drove digital radio initiative

Jun 1995 – Mar 2000 | Staff Engineer, Transistor Architect and Design California Tech Development and Manufacturing / Process Integration

Delivered transistors family in ¼µm NOR Flash Technology deployment for automotive application **Awarded** Intel IAA for Self-Aligned Floating Gate Technology of 130nm NOR Flash **Invented** dual gate oxide process for logic transistors and high voltage transistors

June 1, 1987 – June 23, 1995, Digital Equipment Corporation, Hudson, MA, USA

Individual contributor with 3 levels of career advances

<u>Device Engineer:</u> Extensive Hands-On Experience in device design, layout and characterization <u>Circuit Designer:</u> SRAM Cell and Array Design and Characterization

<u>Process Module Engineer:</u> including clean, diffusion, implant, PVD, Silicide, Salicide and dry/wet etch <u>Process Integration Engineer:</u> front-end integration processes and yield improvement strategies

Expertise and Innovations in Ion Implantation: Avid inventor with deep knowledge in high-energy ion implantation beam line design, large-angle ion implant device design, and gate oxide hardening **Transistors** Architect: 0.75µm CMOS technology used in the Alpha-AXP CPU

EDUCATION

MSEE, Solid State Physics, The Ohio State University, Columbus, OH, USA BSEE, Electronic Engineering, Chung Yuan University, Chung-li, Taiwan

Graduation with Honor, member of The Phi Tau Phi Scholastic Honor Society

PUBLICATION

- **Multiply charged, channeled, ion implantation**, p668, Proceeding of the tenth International Conference on Ion Implant Technology, Catania, Italy, June, 1994
- **Process optimization for large angle tilt implant**, p967, Proceeding of the tenth International Conference on Ion Implant Technology, Catania, Italy, June, 1994
- **Implanted doping profile engineering design for manufacturability**, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (ASMC), Nov, 1994, **DOI:** 10.1109/ASMC.1994.588173
- Role of hydrogen anneal in thin gate oxide for multi-metal-layer CMOS process, The 38th IEEE International Reliability Physics Symposium, Apr, 2000, DOI: 10.1109/RELPHY.2000.843912
- Enabling high-performance mixed-signal system-on-a-chip (SoC) in high performance logic CMOS technology, 2002 Symposium on VLSI Circuits, Jun 2002, DOI: 10.1109/VLSIC.2002.1015074
- A Self-Aligned Contact Architecture with W-Gate for NOR Flash Technology Scaling, International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Apr, 2007, DOI: 10.1109/VTSA.2007.378934
- Fundamental drift of parameters in chalcogenide phase change memory, *J. Appl. Phys.* 102, 124503 (2007), https://doi.org/10.1063/1.2825650
- **The Role of Interfaces in Damascene Phase-Change Memory,** International Electron Devices Meeting. Dec, 2007. **DOI:** <u>10.1109/IEDM.2007.4418936</u>
- Evidence of field induced nucleation in phase change memory, *Appl. Phys. Lett.* 92, 173501 (2008), https://doi.org/10.1063/1.2917583
- **Temporal Changes of Parameters in Phase Change Memory**, International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Apr., 2008, **DOI:** 10.1109/VTSA.2008.4530836
- Phase change memory parameters: Effects of atomic transformations, the 9th Annual Non-Volatile Memory Technology Symposium, Nov, 2008, **DOI:** 10.1109/NVMT.2008.4731187
- A stackable cross point Phase Change Memory, International Electron Devices Meeting. Dec, 2009. DOI: 10.1109/IEDM.2009.5424263

- Phase Change Memory with Chalcogenide Selector (PCMS): Characteristic Behaviors, Physical Models and Key Material Properties, Materials Research Society symposia proceedings, Aug, 2010. DOI: 10.1557/PROC-1250-G14-01-H07-01
- A Survey of Cross Point Phase Change Memory Technologies, International Conference on Solid State Devices and Materials, Tokyo, Sep, 2010, pp1098-1099, https://doi.org/10.7567/SSDM.2010.E-8-1 and AVS 58th Annual International Symposium, Oct, 2011 https://www2.avs.org/symposium2011/Papers/Paper EM2-MoA6.html
- **Universal glass dynamics in PCM nano-glasses**, Materials Research Society symposia proceedings, Jan, 2011. **DOI:** <u>10.1557/PROC-1072-G02-09</u>
- The Pursuit of Atomistic Switching and Cross Point Memory, International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Apr, 2021, DOI: 10.1109/VLSI-TSA51926.2021.9440112

PATENT

DerChang Kau contributed to 120+ IP disclosures primarily in the field of memory technologies and integrated circuits. Here are a few notable examples

- Integrated Circuit Structures with Stacked Electrostatic Discharge (ESD) for Backside Power Delivery This patent involves structures that include a device layer with a front side and a backside, incorporating a silicon substrate with a diode and/or bipolar junction transistor.
- **Bipolar Decoder for Crosspoint Memory** This patent describes a memory device with a memory array and address lines, featuring decoder circuitry to apply various biases to the memory cells.
- Apparatuses and Methods for Concurrently Accessing Multiple Partitions of a Non-Volatile Memory - This patent covers methods for performing multithread, concurrent access of different partitions of a memory array.
- **Self-Aligned Cross-Point Phase Change Memory-Switch Array** This patent relates to a memory device, specifically a self-aligned cross-point phase change memory-switch array.
- **Stacked Two-Level Backend Memory** This patent involves integrated circuit devices with stacked two-level backend memory, enhancing memory cell density and functionality.

List of patents

#	Patent number	Title	Date
1	US-11900998	Bipolar decoder for crosspoint memory	02/13/24
2	US-11768603	Apparatuses and methods for concurrently accessing multiple partitions of a non-volatile memory	09/26/23
3	US-11563055	Self-aligned cross-point phase change memory- switch array	01/24/23
4	US-11354040	Apparatuses and methods for concurrently accessing multiple partitions of a non-volatile memory	06/07/22

5	US-11276465	Device, system and method to float a decoder for deselected address lines in a three-dimensional crosspoint memory architecture	03/15/22
6	US-11114143	Bipolar decoder for crosspoint memory cells	09/07/21
7	US-11010061	Scalable bandwidth non-volatile memory	05/18/21
8	US-10877352	Semiconductor photonic devices using phase change materials	12/29/20
9	US-10783965	Apparatuses and methods including memory access in cross point memory	09/22/20
10	US-10719237	Apparatuses and methods for concurrently accessing multiple partitions of a non-volatile memory	07/21/20
11	US-10692930	Self-aligned cross-point phase change memory- switch array	06/23/20
12	US-10475853	Replacement materials processes for forming cross point memory	11/12/19
13	US-10431270	Apparatuses for modulating threshold voltages of memory cells	10/01/19
14	US-10331360	Scalable bandwidth non-volatile memory	06/25/19
15	US-10304534	Apparatuses and methods including memory access in cross point memory	05/28/19
16	US-10163507	Apparatuses and methods including memory access in cross point memory	12/25/18
17	US-10163982	Multi-deck memory device with inverted deck	12/25/18
18	US-10090050	Apparatuses and methods including memory access in cross point memory	10/02/18
19	US-10050084	Replacement materials processes for forming cross point memory	08/14/18
20	US-9905296	Apparatuses and methods including memory access in cross point memory	02/27/18
21	US-9905280	Methods and apparatuses for modulating threshold voltages of memory cells	02/27/18
22	US-9747978	Reference architecture in a cross-point memory	08/29/17
23	US-9734907	Apparatuses and methods including memory access in cross point memory	08/15/17
24	US-9698344	Dielectric thin film on electrodes for resistance change memory devices	07/04/17
25	US-9659997	Replacement materials processes for forming cross point memory	05/23/17

26	US-9653127	Methods and apparatuses for modulating threshold voltages of memory cells	05/16/17
27	US-9613698	Set and reset operation in phase change memory and associated techniques and configurations	04/04/17
28	US-9590012	Self-aligned cross-point phase change memory- switch array	03/07/17
29	US-9576659	Apparatuses and methods including memory access in cross point memory	02/21/17
30	US-9368554	Apparatuses and methods including memory access in cross point memory	06/14/16
31	US-9368205	Set and reset operation in phase change memory and associated techniques and configurations	06/14/16
32	US-9306165	Replacement materials processes for forming cross point memory	04/05/16
33	US-9287498	Dielectric thin film on electrodes for resistance change memory devices	03/15/16
34	US-9245926	Apparatuses and methods including memory access in cross point memory	01/26/16
35	US-9142271	Reference architecture in a cross-point memory	09/22/15
36	US-8909849	Pipeline architecture for scalable performance on memory	12/09/14
37	US-8765581	Self-aligned cross-point phase change memory- switch array	07/01/14
38	US-8730755	Single transistor driver for address lines in a phase change memory and switch (PCMS) array	05/20/14
39	US-8649212	Method, apparatus and system to determine access information for a phase change memory	02/11/14
40	US-8605531	Fast verify for phase change memory with switch	12/10/13
41	US-8462577	Single transistor driver for address lines in a phase change memory and switch (PCMS) array	06/11/13
42	US-8404514	Fabricating current-confining structures in phase change memory switch cells	03/26/13
43	US-8385100	Energy-efficient set write of phase change memory with switch	02/26/13
44	US-8374022	Programming phase change memories using ovonic threshold switches	02/12/13
45	US-8289762	Double-pulse write for phase change memory	10/16/12
46	US-8278641	Fabricating current-confining structures in phase change memory switch cells	10/02/12

47	US-8184469	Stored multi-bit data characterized by multiple- dimensional memory states	05/22/12
48	US-8081506	Amorphous semiconductor threshold switch volatile memory cell	12/20/11
49	US-8049197	Self-aligned nano-cross-point phase change memory	11/01/11
50	US-7986549	Apparatus and method for refreshing or toggling a phase-change memory cell	07/26/11
51	US-7764477	Electrostatic discharge protection circuit including ovonic threshold switches	07/27/10
52	US-7751226	Reading phase change memories with select devices	07/06/10
53	US-7547597	Direct alignment scheme between multiple lithography layers	06/16/09
54	US-7087943	Direct alignment scheme between multiple lithography layers	08/08/06
55	US-6911695	Transistor having insulating spacers on gate sidewalls to reduce overlap between the gate and doped extension regions of the source and drain	06/28/05

REFERENCE UPON REQUESTS